Analysis of hot deformation behavior of TB9 titanium alloy after friction correction and establishment of processing map
-
摘要: 采用TB9钛合金作为研究对象,在Gleeble-1500热模拟设备上对圆柱试样进行高温等温压缩实验,热压缩温度为750~1000 ℃,应变速率为0.01~10 s−1,对获得的实验结果进行摩擦修正,并根据摩擦修正后的应力-应变曲线绘制热加工图。结果表明:摩擦修正后的应力-应变曲线明显低于修正前的曲线,且随着应变的增加,摩擦修正前后的应力差值逐渐增加;计算获得了经过摩擦修正的真应力-应变曲线
$ \sigma {\text{ = }}\frac{{\arcsin h{{[\frac{{\dot \varepsilon \exp (\frac{Q}{{RT}})}}{A}]}^{\frac{1}{n}}}}}{\alpha } $ ,可用该式预测TB9钛合金在750~1000 ℃,不同应变速率条件下的应力。失稳变形会导致TB9钛合金产生与压缩方向呈约45°的流变局域化区域变形带,合金的组织均匀性较差;在适宜的工艺窗口内热加工,合金主要发生动态再结晶和动态回复,可以改善显微组织,提高合金的性能。根据建立的热加工图,得出了TB9 钛合金的适宜热变形工艺参数为:变形温度850~1000 ℃,应变速率0.01~1 s−1。Abstract: The hot compression tests of TB9 titanium alloy sample were carried out on Gleeble-1500 thermal simulator at the temperature range of 750-1000 ℃ and the strain rate range of 0.01-10 s−1. The stress-strain curves obtained by the experiment were subjected to friction correction and the processing map was drawn according to the corrected stress-strain curve .The results show that the stress-strain curve after friction correction is obviously lower than that before correction, and the stress difference between them increased with the increase of strain. The corrected stress−strain curve is$ \sigma {\text{ = }}\frac{{\arcsin h{{[\frac{{\dot \varepsilon \exp (\frac{Q}{{RT}})}}{A}]}^{\frac{1}{n}}}}}{\alpha } $ , and can used to predict the stress of TB9 titanium alloy under different strain rates at 750 ℃ to 1000 ℃. Instable deformation of TB9 titanium alloy leads to localize the deformation bands which is about 45° to the compression direction appeared, resulting in the inhomogeneous microstructure. Stable deformation during hot working in suitable process window can bring dynamic recrystallization and recovery in the alloy, which can improve the microstructure and properties of the alloy. According to the processing map, the suitable thermal deformation process parameters of TB9 titanium alloy are obtained as follows: deformation temperatures of 850-1000 ℃ at deformation rates of 0.01-1 s−1.-
Key words:
- TB9 titanium alloy /
- hot compression /
- processing map /
- stress–strain curve correction
-
表 1 不同应变条件下计算获得的材料参数
Table 1. Parameters calculated with different strains
ε α Q/(J•mol-1) n ln A R2 0.1 0.00575 225065 3.61 21.68 0.994 0.2 0.00602 222948 3.59 21.45 0.992 0.3 0.00633 224581 3.63 21.61 0.991 0.4 0.00675 225925 3.67 21.71 0.990 0.5 0.00725 229183 3.74 22.02 0.988 0.6 0.00776 232602 3.84 22.37 0.988 0.7 0.00831 238405 3.91 22.96 0.985 表 2 TB9 钛合金参数和真应变之间的关系式
Table 2. Relationship between parameters and true strains of TB9 titanium alloy
Parameter Relational R2 α –0.00758ε4+0.00934ε3-0.000167ε2+0.00210ε+0.00554 0.999 Q 411894ε4-684475ε3+448858ε2-111370ε+232310 0.998 n –2.273ε4+1.970ε3+1.000ε2-0.508ε+3.647 0.997 ln A 40.53ε4–66.28ε3+43.21ε2–10.88ε+22.39 0.939 -
[1] 赵永庆,奚正平,曲恒磊. 我国航空用钛合金材料研究现状[J]. 航空材料学报,2003,23(增刊):215-219.ZHAO Y Q,XI Z P,QU H L. Current situation of titanium alloy materials used for national aviation[J]. Journal of Aeronautical Materials,2003,23(Suppl):215-219. [2] 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报,2014,34(4):44-50. doi: 10.11868/j.issn.1005-5053.2014.4.004ZHU Z S. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials,2014,34(4):44-50. doi: 10.11868/j.issn.1005-5053.2014.4.004 [3] BOYER R R,BRIGGS R D. The use of β titanium alloys in the aerospace industry[J]. Journal of Materials Engineering & Performance,2013,22(10):2916-2920. [4] 任德春,苏虎虎,张慧博,等. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报,2019,55(4):480-488. doi: 10.11900/0412.1961.2018.00241REN D C,SU H H,ZHANG H B,et al. Effect of cold rotary-swaging deformation on microstructure and tensile properties of TB9 titanium alloy[J]. Acta Metallurgica Sinica,2019,55(4):480-488. doi: 10.11900/0412.1961.2018.00241 [5] 黄鎏杰,王健,张慧博,等. 冷拉拔变形量和时效温度对TB9钛合金丝材组织和性能的影响[J]. 中国有色金属学报,2013,23(1):11-14.HUANG L J,WANG J,ZHANG H B,et al. Effects of cold drawing deformation and aging temperature on microstructure and mechanical properties of TB9 titanium alloy[J]. The Chinese Journal of Nonferrous Metals,2013,23(1):11-14. [6] QIN C,YAO Z K,NING Y Q,et al. Hot deformation behavior of TC11/Ti-22Al-25Nb dual-alloy in isothermal compression[J]. Transactions of Nonferrous Metals Society of China,2015,25:2195-2205. doi: 10.1016/S1003-6326(15)63832-8 [7] 张智,巨建辉,戚运莲,等. 钛合金锻造工艺及其锻件的应用[J]. 热加工工艺,2010,39(23):34-37. doi: 10.3969/j.issn.1001-3814.2010.23.012ZHANG Z,JU J H,QI Y L,et al. Forging technology of titanium alloy and application of forgings[J]. Hot Working Technology,2010,39(23):34-37. doi: 10.3969/j.issn.1001-3814.2010.23.012 [8] 郭金明, 任璐, 倪沛彤, 等. 轧制温度和热处理对TB9钛合金棒材组织和性能的影响[J]. 钛工业进展, 2015(5): 27-30.GUO J M, REN L, NI P T, et al. Efects of rolling temperature and heat treatment on microstrucures and mechanical properties of TB9 titanium alloy rods. Titanium, 2015(5): 27-30. [9] 许鑫, 董利民, 张志强, 等. 应变对TB9钛合金热变形行为及显微组织的影响[J]. 中国有色金属学报, 2013, (23s): 566-570.XU X, DONG L M, ZHANG Z Q, et al. Effect of strain on hot deformation behavior and microstructure of TB9 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, (23s): 566-570. [10] XU X,DONG L M,BA H B,et al. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field[J]. Transactions of Nonferrous Metals Society of China,2016,26(11):2874-2882. doi: 10.1016/S1003-6326(16)64416-3 [11] 高文理, 关宇飞. 5083铝合金热压缩应力-应变曲线修正与热加工图[J]. 中国有色金属学报, 2018, 28(9): 33-41.GAO W L, GUAN Y F. Correction of flow stress-strain curve and processing maps of 5083 aluminum alloy during hot compression. Chinese Journal of Nonferrous Metals, 2018, 28(9): 33-41. [12] WANJARA P,JAHAZI M,MONAJATI H,et al. Hot working behavior of near-α alloy IMI834[J]. Materials Science & Engineering :A,2005,396(1/2):50-60. [13] NAJAFIZADEH R E. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology,2004,152(2):136-143. doi: 10.1016/j.jmatprotec.2004.03.029 [14] 薛克敏,薄冬青,李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 材料导报,2018,32(8):1306-1310.XUE K M,BO D Q,LI P. Hot compression microstructure and rheological behavior of rolled 7A60 aluminum alloy[J]. Materials Review,2018,32(8):1306-1310. [15] ZENER C,HOLLOMON J H. Problems in non‐elastic deformation of metals[J]. Journal of Applied Physics,1946,17(2):69-82. doi: 10.1063/1.1707696 [16] ZIEGLER H. Progress in solid mechanics[M]. New York: John Wiley and Sons, 1963: 93-193. [17] 苏娟华, 孙浩, 任凤章, 等. TA10钛合金热加工图的建立及分析[J]. 中国有色金属学报, 2018, 28(1): 78-86.SU J H, SUN H, REN F Z, et al. Establishment and analysis for processing map of TA10 titanium alloy[J]. Chinese Journal of Nonferrous Metals, 2018, 28(1): 78-86. -