TB9钛合金摩擦修正热变形分析和热加工图的建立

王春阳 王玉会 李野 张旺峰

王春阳, 王玉会, 李野, 张旺峰. TB9钛合金摩擦修正热变形分析和热加工图的建立[J]. 航空材料学报, 2022, 42(2): 11-19. doi: 10.11868/j.issn.1005-5053.2021.000125
引用本文: 王春阳, 王玉会, 李野, 张旺峰. TB9钛合金摩擦修正热变形分析和热加工图的建立[J]. 航空材料学报, 2022, 42(2): 11-19. doi: 10.11868/j.issn.1005-5053.2021.000125
WANG Chunyang, WANG Yuhui, LI Ye, ZHANG Wangfeng. Analysis of hot deformation behavior of TB9 titanium alloy after friction correction and establishment of processing map[J]. Journal of Aeronautical Materials, 2022, 42(2): 11-19. doi: 10.11868/j.issn.1005-5053.2021.000125
Citation: WANG Chunyang, WANG Yuhui, LI Ye, ZHANG Wangfeng. Analysis of hot deformation behavior of TB9 titanium alloy after friction correction and establishment of processing map[J]. Journal of Aeronautical Materials, 2022, 42(2): 11-19. doi: 10.11868/j.issn.1005-5053.2021.000125

TB9钛合金摩擦修正热变形分析和热加工图的建立

doi: 10.11868/j.issn.1005-5053.2021.000125
详细信息
    通讯作者:

    王玉会(1977—),女,博士,高级工程师,主要从事钛合金材料研究,联系地址:北京市海淀区温泉镇环山村航材院(100095),E-mail: wyhnoah@126.com

  • 中图分类号: TG146.2

Analysis of hot deformation behavior of TB9 titanium alloy after friction correction and establishment of processing map

  • 摘要: 采用TB9钛合金作为研究对象,在Gleeble-1500热模拟设备上对圆柱试样进行高温等温压缩实验,热压缩温度为750~1000 ℃,应变速率为0.01~10 s−1,对获得的实验结果进行摩擦修正,并根据摩擦修正后的应力-应变曲线绘制热加工图。结果表明:摩擦修正后的应力-应变曲线明显低于修正前的曲线,且随着应变的增加,摩擦修正前后的应力差值逐渐增加;计算获得了经过摩擦修正的真应力-应变曲线$ \sigma {\text{ = }}\frac{{\arcsin h{{[\frac{{\dot \varepsilon \exp (\frac{Q}{{RT}})}}{A}]}^{\frac{1}{n}}}}}{\alpha } $,可用该式预测TB9钛合金在750~1000 ℃,不同应变速率条件下的应力。失稳变形会导致TB9钛合金产生与压缩方向呈约45°的流变局域化区域变形带,合金的组织均匀性较差;在适宜的工艺窗口内热加工,合金主要发生动态再结晶和动态回复,可以改善显微组织,提高合金的性能。根据建立的热加工图,得出了TB9 钛合金的适宜热变形工艺参数为:变形温度850~1000 ℃,应变速率0.01~1 s−1

     

  • 图  1  TB9钛合金850 ℃热压缩摩擦修正前后应力-应变曲线对比图

    Figure  1.  Comparison of stress-strain curves of TB9 titanium alloy before and after friction correction under 850 ℃ hot compression

    图  2  TB9钛合金不同条件下的热压缩应力-应变曲线  (a)0.01 s–1; (b)0.1 s–1; (c)1 s–1; (d)10 s–1

    Figure  2.  Hot compression stress-strain curves of TB9 titanium alloy under different conditions  (a)0.01 s–1; (b)0.1 s–1; (c)1 s–1; (d)10 s–1

    图  3  不同变形温度条件下lnσ-ln$\dot \varepsilon $(a)和σ-ln$\dot \varepsilon $(b)曲线

    Figure  3.  ln σ-ln$ \dot \varepsilon $(a) and σ-ln$ \dot \varepsilon $(b) curves under different deformation temperatures

    图  4  不同变形温度条件下ln[sinh(ασ)]-ln$\dot \varepsilon $(a)和ln[sinh(ασ)]-1000/T (b)曲线

    Figure  4.  ln[sinh(ασ)]-ln$ \dot \varepsilon $(a) and ln[sinh(ασ)]-1000/T (b) curves under different deformation temperatures

    图  5  ln Z-ln[sinh(ασ)]曲线

    Figure  5.  ln Z-ln[sinh(ασ)] curve

    图  6  热模拟流变应力实验结果(线)和计算结果(点)对比 (a) 800 ℃;(b) 900 ℃

    Figure  6.  Comparison of test results (lines) and calculation results (points) (a) 800 ℃; (b) 900 ℃

    图  7  不同应变条件下TB9的热加工图  (a)0.2 ;(b)0.4 ;(c)0.6 ;(d)0.7

    Figure  7.  Processing maps of TB9 titanium alloy under different strains  (a)0.2; (b)0.4 ;(c)0.6 ;(d)0.7

    图  8  TB9钛合金应变速率0.01 s–1不同变形温度条件下的等温压缩金相组织 (a)750 ℃ ;(b)800 ℃ ;(c)850 ℃; (d)900 ℃;(e)950 ℃;(f)1000 ℃

    Figure  8.  Microstructures of TB9 titanium alloy at strain rate 0.01s–1 under different temperatures (a)750 ℃; (b)800 ℃ ;(c)850 ℃ ;(d)900 ℃ ;(e) 950 ℃;(f) 1000 ℃

    图  9  TB9钛合金应变速率10 s–1不同变形温度条件下的等温压缩金相组织 (a)750 ℃ ;(b)800 ℃ ;(c)850 ℃ ;(d)900 ℃ ;(e)950 ℃ ;(f)1000 ℃

    Figure  9.  Microstructures of TB9 titanium alloy at strain rate 10 s–1 under different temperatures (a)750 ℃ ;(b)800 ℃ ;(c)850 ℃; (d)900 ℃;(e)950 ℃;(f)1000 ℃

    图  10  失稳区和稳态变形区热模拟试样的宏观组织  (a)失稳变形区; (b)稳态变形区

    Figure  10.  Macrostructures in instable deformation zone and stable deformation zone  (a) instable deformation zone; (b) stable deformation zone

    图  11  TB9钛合热加工工艺窗口

    Figure  11.  Hot working process window of TB9 titanium alloy

    表  1  不同应变条件下计算获得的材料参数

    Table  1.   Parameters calculated with different strains

    εαQ/(J•mol-1nln AR2
    0.10.005752250653.6121.680.994
    0.20.006022229483.5921.450.992
    0.30.006332245813.6321.610.991
    0.40.006752259253.6721.710.990
    0.50.007252291833.7422.020.988
    0.60.007762326023.8422.370.988
    0.70.008312384053.9122.960.985
    下载: 导出CSV

    表  2  TB9 钛合金参数和真应变之间的关系式

    Table  2.   Relationship between parameters and true strains of TB9 titanium alloy

    ParameterRelationalR2
    α–0.00758ε4+0.00934ε3-0.000167ε2+0.00210ε+0.005540.999
    Q411894ε4-684475ε3+448858ε2-111370ε+2323100.998
    n–2.273ε4+1.970ε3+1.000ε2-0.508ε+3.6470.997
    ln A40.53ε4–66.28ε3+43.21ε2–10.88ε+22.390.939
    下载: 导出CSV
  • [1] 赵永庆,奚正平,曲恒磊. 我国航空用钛合金材料研究现状[J]. 航空材料学报,2003,23(增刊):215-219.

    ZHAO Y Q,XI Z P,QU H L. Current situation of titanium alloy materials used for national aviation[J]. Journal of Aeronautical Materials,2003,23(Suppl):215-219.
    [2] 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报,2014,34(4):44-50. doi: 10.11868/j.issn.1005-5053.2014.4.004

    ZHU Z S. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials,2014,34(4):44-50. doi: 10.11868/j.issn.1005-5053.2014.4.004
    [3] BOYER R R,BRIGGS R D. The use of β titanium alloys in the aerospace industry[J]. Journal of Materials Engineering & Performance,2013,22(10):2916-2920.
    [4] 任德春,苏虎虎,张慧博,等. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报,2019,55(4):480-488. doi: 10.11900/0412.1961.2018.00241

    REN D C,SU H H,ZHANG H B,et al. Effect of cold rotary-swaging deformation on microstructure and tensile properties of TB9 titanium alloy[J]. Acta Metallurgica Sinica,2019,55(4):480-488. doi: 10.11900/0412.1961.2018.00241
    [5] 黄鎏杰,王健,张慧博,等. 冷拉拔变形量和时效温度对TB9钛合金丝材组织和性能的影响[J]. 中国有色金属学报,2013,23(1):11-14.

    HUANG L J,WANG J,ZHANG H B,et al. Effects of cold drawing deformation and aging temperature on microstructure and mechanical properties of TB9 titanium alloy[J]. The Chinese Journal of Nonferrous Metals,2013,23(1):11-14.
    [6] QIN C,YAO Z K,NING Y Q,et al. Hot deformation behavior of TC11/Ti-22Al-25Nb dual-alloy in isothermal compression[J]. Transactions of Nonferrous Metals Society of China,2015,25:2195-2205. doi: 10.1016/S1003-6326(15)63832-8
    [7] 张智,巨建辉,戚运莲,等. 钛合金锻造工艺及其锻件的应用[J]. 热加工工艺,2010,39(23):34-37. doi: 10.3969/j.issn.1001-3814.2010.23.012

    ZHANG Z,JU J H,QI Y L,et al. Forging technology of titanium alloy and application of forgings[J]. Hot Working Technology,2010,39(23):34-37. doi: 10.3969/j.issn.1001-3814.2010.23.012
    [8] 郭金明, 任璐, 倪沛彤, 等. 轧制温度和热处理对TB9钛合金棒材组织和性能的影响[J]. 钛工业进展, 2015(5): 27-30.

    GUO J M, REN L, NI P T, et al. Efects of rolling temperature and heat treatment on microstrucures and mechanical properties of TB9 titanium alloy rods. Titanium, 2015(5): 27-30.
    [9] 许鑫, 董利民, 张志强, 等. 应变对TB9钛合金热变形行为及显微组织的影响[J]. 中国有色金属学报, 2013, (23s): 566-570.

    XU X, DONG L M, ZHANG Z Q, et al. Effect of strain on hot deformation behavior and microstructure of TB9 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, (23s): 566-570.
    [10] XU X,DONG L M,BA H B,et al. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field[J]. Transactions of Nonferrous Metals Society of China,2016,26(11):2874-2882. doi: 10.1016/S1003-6326(16)64416-3
    [11] 高文理, 关宇飞. 5083铝合金热压缩应力-应变曲线修正与热加工图[J]. 中国有色金属学报, 2018, 28(9): 33-41.

    GAO W L, GUAN Y F. Correction of flow stress-strain curve and processing maps of 5083 aluminum alloy during hot compression. Chinese Journal of Nonferrous Metals, 2018, 28(9): 33-41.
    [12] WANJARA P,JAHAZI M,MONAJATI H,et al. Hot working behavior of near-α alloy IMI834[J]. Materials Science & Engineering :A,2005,396(1/2):50-60.
    [13] NAJAFIZADEH R E. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology,2004,152(2):136-143. doi: 10.1016/j.jmatprotec.2004.03.029
    [14] 薛克敏,薄冬青,李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 材料导报,2018,32(8):1306-1310.

    XUE K M,BO D Q,LI P. Hot compression microstructure and rheological behavior of rolled 7A60 aluminum alloy[J]. Materials Review,2018,32(8):1306-1310.
    [15] ZENER C,HOLLOMON J H. Problems in non‐elastic deformation of metals[J]. Journal of Applied Physics,1946,17(2):69-82. doi: 10.1063/1.1707696
    [16] ZIEGLER H. Progress in solid mechanics[M]. New York: John Wiley and Sons, 1963: 93-193.
    [17] 苏娟华, 孙浩, 任凤章, 等. TA10钛合金热加工图的建立及分析[J]. 中国有色金属学报, 2018, 28(1): 78-86.

    SU J H, SUN H, REN F Z, et al. Establishment and analysis for processing map of TA10 titanium alloy[J]. Chinese Journal of Nonferrous Metals, 2018, 28(1): 78-86.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  77
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 录用日期:  2022-01-11
  • 修回日期:  2022-03-12
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-04-22

目录

    /

    返回文章
    返回