Mechanical behavior and modification of poly-ether-ether-ketone using a molecular dynamics method
-
摘要: 采用分子动力学方法预测聚醚醚酮(PEEK)的拉伸力学性能,对PEEK分子模型进行各向异性控压的非平衡态拉伸模拟,获得PEEK材料的应力-应变曲线,计算弹性模量、屈服强度等力学性能。分析不同应变率和温度下PEEK的力学性能、自由体积、均方回转半径和体系能量随拉伸应变的变化规律,进而解释PEEK分子链特征与材料宏观性能的关系。结果表明:随着应变率的增加,PEEK的弹性模量和屈服强度大幅提高;随着温度的增加,PEEK的弹性模量和屈服强度大幅降低;在拉伸弹性和屈服阶段体系的自由体积增加较快,分子链的均方回转半径基本不变,体系总势能以非键能为主。非键相互作用是影响PEEK弹性模量和屈服强度的一个主导因素,由此提出氨基修饰PEEK侧链的改性策略,结果表明,氨基官能化PEEK的弹性模量和屈服强度较PEEK分别提升21%和34%。Abstract: The molecular dynamics method was employed to predict the tensile mechanical properties of polyether-ether-ketone (PEEK). Non-equilibrium tensile simulation with anisotropic pressure control was employed to obtain the stress-strain curve of PEEK, and to calculate the elastic modulus, yield strength and other mechanical properties. The influences of the strain rate and temperature on the mechanical properties, free volume, mean square radius of gyration (Rg), and energy for PEEK were investigated to explain the relationship between PEEK chain characteristics and macro mechanical properties. The results indicate that the elastic modulus and yield strength of PEEK significantly increase with the increase of strain rate, and significantly decrease with the increase of temperature. In the elastic and yield stage, free volume linearly increases, and Rg of PEEK chains remains steady, and the non-bonded energy results in the amount of the total potential energy increase. The interchain non-bonded interactions play a dominant role in the elastic and yield performance. Therefore, the amino modification strategy is investigated to improve the mechanical property of PEEK. It is found that the elastic modulus and yield strength of PEEK modified by amino are increased by 21% and 34% respectively than that of PEEK.
-
表 1 PEEK体系在不同应变率下的力学性能
Table 1. Mechanical properties of PEEK system at different strain rates
Strain rate /ns–1 Elastic modulus /GPa Yield strength /MPa 0.1 3.87±0.30 157.3±10.1 1 4.01±0.43 198.6±8.7 10 5.02±0.70 253.3±29.0 表 2 PEEK体系应变为0.5时在不同应变率下的键合能、非键能和总势能
Table 2. Bonded energy, non-bonded energy and total potential energy of PEEK system at a strain of 0.5 and different strain rates
Strain rate/
ns–1Bonded energy/
(kJ·mol–1)Non-bonded energy/
(kJ·mol–1)Total potential energy/
(kJ·mol–1)0.1 2951.77 3505.37 6457.14 1 3628.72 6356.47 9985.20 10 3814.89 10484.79 14299.68 表 3 不同温度下PEEK聚合物的力学性能
Table 3. Mechanical properties of PEEK polymer at different temperatures
Temperature /K Elastic modulus /GPa Yield strength /MPa 77 6.17±0.51 311.0±2.0 300 3.87±0.30 157.3±10.1 373 2.48±0.48 134.7±7.4 473 1.28±0.30 81.2±0.8 表 4 PEEK和PEEK-NH2在0.1 ns–1应变率下的力学性能
Table 4. Mechanical properties of PEEK and PEEK-NH2 at a strain rate of 0.1 ns–1
Material Elastic modulus/GPa Yield strength/MPa PEEK 3.87±0.30 157.3±10.1 PEEK-NH2 4.69±1.10 210.2±10.5 表 5 PEEK和PEEK-NH2在应变为0.5时的键合能、非键能和总势能
Table 5. Bonded energy, non-bonded energy and total potential energy for PEEK and PEEK-NH2 at a strain of 0.5
Material Boned energy/(kJ·mol–1) Non-bonded energy/(kJ·mol–1) Total potential energy/(kJ·mol–1) PEEK 2951.77 3505.37 6457.14 PEEK-NH2 3840.83 6492.42 10333.25 -
[1] 胡记强,王兵,张涵其,等. 热塑性复合材料构件的制备及其在航空航天领域的应用[J]. 宇航总体技术,2020,4(4):61-70.HU J Q,WANG B,ZHANG H Q,et al. Fabrication of thermoplastic composite components and their application in aerospace[J]. Astronautical Systems Engineering Technology,2020,4(4):61-70. [2] 刘彬,安卫龙,倪楠楠. 国外热塑性复合材料工程应用现状[J]. 航空制造技术,2021,64(22):80-90.LIU B,AN W L,NI N N. Engineering application status of thermoplastic composite materials in foreign[J]. Aeronautical Manufacturing Technology,2021,64(22):80-90. [3] 谌广昌,姚佳楠,张金栋,等. 高性能热塑性复合材料在直升机结构上的应用与展望[J]. 航空材料学报,2019,39(5):24-33. doi: 10.11868/j.issn.1005-5053.2019.000035CHEN G C,YAO J N,ZHANG J D,et al. Application and prospect of high-performance thermoplastic composites in helicopter structure[J]. Journal of Aeronautical Materials,2019,39(5):24-33. doi: 10.11868/j.issn.1005-5053.2019.000035 [4] 倪楠楠,卞凯,夏璐,等. 先进复合材料在无人机上的应用[J]. 航空材料学报,2019,39(5):45-60. doi: 10.11868/j.issn.1005-5053.2018.000099NI N N,BIAN K,XIA L,et al. Application of advanced composite materials for UAV[J]. Journal of Aeronautical Materials,2019,39(5):45-60. doi: 10.11868/j.issn.1005-5053.2018.000099 [5] 张辉,方良超,陈奇海,等. 聚醚醚酮在航空航天领域的应用[J]. 新技术新工艺,2018(10):5-8.ZHANG H,FANG L C,CHEN Q H,et al. Application of PEEK aerospace industry[J]. New Technology & New Process,2018(10):5-8. [6] 肇研,刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程,2020,48(8):49-61. doi: 10.11868/j.issn.1001-4381.2019.000209ZHAO Y,LIU H S. Preparation and application of continuous fiber reinforced high-performance thermoplastic composites[J]. Journal of Materials Engineering,2020,48(8):49-61. doi: 10.11868/j.issn.1001-4381.2019.000209 [7] 景鹏展,朱姝,余木火,等. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程,2016,44(3):21-27. doi: 10.11868/j.issn.1001-4381.2016.03.004JING P Z,ZHU S,YU M H,et al. Preparation of carbon fiber fabric reinforced polyphenylene sulfide (CFF/PPS) thermoplastic composites based on surface modification of carbon fibers[J]. Journal of Materials Engineering,2016,44(3):21-27. doi: 10.11868/j.issn.1001-4381.2016.03.004 [8] HOSSAIN D,TSCHOPP M A,WARD D K,et al. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene[J]. Polymer,2010,51(25):6071-6083. doi: 10.1016/j.polymer.2010.10.009 [9] BOWMAN A L,MUN S,NOURANIAN S,et al. Free volume and internal structural evolution during creep in model amorphous polyethylene by molecular dynamics simulations[J]. Polymer,2019,170(29):85-100. [10] SHANG Y R,ZHANG X X,XU H,et al. Microscopic study of structure/property interrelation of amorphous polymers during uniaxial deformation: a molecular dynamics approach[J]. Polymer,2015,77(33):254-265. [11] LIAO L,HUANG C G,MENG C Y. Study on mechanical properties of polyethylene with chain branching in atomic scale by molecular dynamics simulation[J]. Molecular Simulation,2018,44(12):1016-1024. doi: 10.1080/08927022.2018.1471690 [12] PARK C,JUNG J,YUN G J. A multiscale micromorphic model with strain rate relationship between MD simulations and macroscale experimental tests and dynamic heterogeneity for glassy polymers[J]. Composites Part B,2020,202(1):108439. [13] PISANI W A,RADUE M S,CHINKANJANAROT S,et al. Multiscale modeling of PEEK using reactive molecular dynamics modeling and micromechanics[J]. Polymer,2019,163:96-105. doi: 10.1016/j.polymer.2018.12.052 [14] WANG B,ZHANG K,ZHOU C H,et al. Engineering the mechanical properties of CNT/PEEK nanocomposites[J]. RSC Advances,2019,9(23):12836-12845. doi: 10.1039/C9RA01212E [15] NANDAN B,KANDPAL L D,MATHUR G N. Glass transition behavior of poly(ether ether ketone)/poly(aryl ether sulphone) blends: dynamic mechanical and dielectric relaxation studies[J]. Polymer,2003,44(4):1267-1279. doi: 10.1016/S0032-3861(02)00852-2 [16] ROTTLER J,ROBBINS M O. Yield conditions for deformation of amorphous polymer glasses[J]. Physical Review E,2001,64(5):051801. [17] ZHANG K,YUAN X Z,LI D Y,et al. Mechanical properties of solution-blended graphene nanoplatelets/polyether-ether-ketone nanocomposites[J]. Journal of Physical Chemistry B,2021,125(37):10597-10609. doi: 10.1021/acs.jpcb.1c04609 [18] DÍEZ-PASCUAL A M,GUAN J,SIMARD B,et al. Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: Ⅱ – mechanical properties, electrical and thermal conductivity[J]. Composites Part A,2012,43(6):1007-1015. doi: 10.1016/j.compositesa.2011.11.003 [19] ZHANG K,DU J,REN M F,et al. Computational design for the damping characteristics of poly(ether ether ketone)[J]. Journal of Physical Chemistry B,2021,125(33):9588-9600. doi: 10.1021/acs.jpcb.1c03649 [20] SHANG Y S,WU X,LIU Y F,et al. Preparation of PEEK/MWCNTs composites with excellent mechanical and tribological properties[J]. High Performance Polymers,2018,31(10):1-8. [21] RAE P J,BROWN E N,ORLER E B. The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response[J]. Polymer,2007,48(2):598-615. doi: 10.1016/j.polymer.2006.11.032 [22] VU-BAC N,LAHMER T,KEITEL H,et al. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations[J]. Mechanics of Materials,2014,68:70-84. doi: 10.1016/j.mechmat.2013.07.021 [23] LI C K,ZHANG Z Y,ZHAN H F,et al. Mechanical properties of single-layer diamond reinforced poly(vinyl alcohol) nanocomposites through atomistic simulation[J]. Macromolecular Materials and Engineering,2021,306:2100292. doi: 10.1002/mame.202100292 [24] 郑兵, 黄志高, 张云, 等. 聚醚醚酮高温变形的本构建模[C]∥创新塑性加工技术, 推动智能制造发展——第十五届全国塑性工程学会年会暨第七届全球华人塑性加工技术交流会学术会议论文集. 济南: [佚名], 2017: 436-442.ZHENG B, HUANG Z G, ZHANG Y, et al. Constitutive modeling of poly-ether-ether-ketone at elevated temperatures[C] ∥ Innovating plastic processing technology to promote the development of intelligent manufacturing—The 15th National Plastic Engineering Society Annual Meeting and the 7th Global Chinese Plastic Processing Technology Exchange Conference. Jinan: [s. n. ], 2017: 436-442. [25] DÍEZ-PASCUAL A M,NAFFAKH M,GONZÁLEZ-DOMÍNGUEZ J M,et al. High performance PEEK/carbon nanotube composites compatibilized with polysulfones Ⅱ: mechanical and electrical properties[J]. Carbon,2010,48(12):3500-3511. doi: 10.1016/j.carbon.2010.05.050 -