[1] |
JAYAN J S,SARITHA A,JOSEPH K. Innovative materials of this era for toughening the epoxy matrix: A review[J]. Polymer Composites,2018,39(S4):E1959-E1986. doi: 10.1002/pc.24789
|
[2] |
SHRIVASTAVA R,SINGH K K. Interlaminar fracture toughness characterization of laminated composites: a review[J]. Polymer Reviews,2020,60(3):542-593. doi: 10.1080/15583724.2019.1677708
|
[3] |
LIU K W,MACOSKO C W. Can nanoparticle toughen fiber-reinforced thermosetting polymers?[J]. Journal Materials Science,2019,54(6):4471-4483. doi: 10.1007/s10853-018-03195-9
|
[4] |
PRASAD V,SEKAR K,VARGHESE S,et al. Enhancing Mode I and Mode II interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2[J]. Composites Part A-Applied Science and Manufacturing,2019,124:105505-105515. doi: 10.1016/j.compositesa.2019.105505
|
[5] |
刘静,曹意林,李刚,et al. 激光对碳纤维及碳纤维/环氧树脂复合材料性能影响[J]. 复合材料学报,2018,35(11):2979-2986.LIU J,CAO Y L,LI G,et al. Effect of laser on properties of carbon fibre and carbon fibre/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2018,35(11):2979-2986.
|
[6] |
WANG J,MA C G,CHEN G,et al. Interlaminar fracture toughness and conductivity of carbon fiber/epoxy resin composite laminate modified by carbon black-loaded polypropylene non-woven fabric interleaves[J]. Composite Structures,2020,234:111649-111657. doi: 10.1016/j.compstruct.2019.111649
|
[7] |
赵泽华,孙劲松,郭颖,et al. 聚酰亚胺颗粒层间增韧碳纤维/邻苯二甲腈树脂复合材料[J]. 复合材料学报,2021,38(3):732-740.ZHAO Z H,SUN J S,GUO Y,et al. Improving interlaminar toughness of carbon fiber/phthalonitrile composite via polyimide[J]. Acta Materiae Compositae Sinica,2021,38(3):732-740.
|
[8] |
谢志鹏,张会旗,原续波,et al. 环氧树脂增韧改性的研究进展[J]. 高分子通报,2018(11):1-16.XIE Z P,ZHANG H Q,YUAN X B,et al. Research process of toughening epoxy resin[J]. Polymer Bulletin,2018(11):1-16.
|
[9] |
TSAI S N,CAROLAN D,SPRENGER S,et al. Fracture and fatigue behaviour of carbon fibre composites with nanoparticle-sized fibres[J]. Compos Struct,2019,217:143-149. doi: 10.1016/j.compstruct.2019.03.015
|
[10] |
胡小雨,蒋秋冉,魏毅,et al. 碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征[J]. 复合材料学报,2018,35(7):1691-1699.HU X Y,JIANG Q R,WEI Y,et al. Preparation and characterization of carbon fiber-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1691-1699.
|
[11] |
MISHRA K,BASTOLA K P,SINGH R P,et al. Effect of graphene oxide on the interlaminar fracture toughness of carbon fiber/epoxy composites[J]. Polymer Engineering and Science,2019,59(6):1199-1208. doi: 10.1002/pen.25100
|
[12] |
韩潇,肇研,孙健明,et al. 氧化石墨烯/炭纤维/环氧树脂基复合材料的制备及其层间剪切性能(英文)[J]. 新型炭材料,2017,32(1):48-55. doi: 10.1016/S1872-5805(17)60107-0HAN X,ZHAO Y,SUN J M,et al. Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites[J]. New Carbon Materials,2017,32(1):48-55. doi: 10.1016/S1872-5805(17)60107-0
|
[13] |
SHEN X J,DANG C Y,TANG B L,et al. The reinforcing effect of oriented graphene on the interlaminar shear strength of carbon fabric/epoxy composites[J]. Materials & Design,2020,185:108257-108264.
|
[14] |
LADANI R B,WU S,KINLOCH A J,et al. Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carbon[J]. Materials & Design,2016,94:554-564.
|
[15] |
BIN L,CAO S H,GAO N Y,et al. Thermosetting CFRP interlaminar toughening with multi-layers graphene and MWCNTs under mode I fracture[J]. Composites Science and Technology,2019,183:107829-107840. doi: 10.1016/j.compscitech.2019.107829
|
[16] |
ZENG S H,SHEN M X,XUE Y J,et al. A novel strategy to reinforce glass fiber fabric/epoxy composites via modifying fibers with self-assembled multi-walled carbon nanotubes-montmorillonite[J]. Polymer Composites,2020,41(2):522-534. doi: 10.1002/pc.25384
|
[17] |
YAN M L,JIAO W C,DING G M,et al. High strength and toughness epoxy nanocomposites reinforced with graphene oxide-nanocellulose micro/nanoscale structures[J]. Applied Surface Science,2019,497:143802-143810. doi: 10.1016/j.apsusc.2019.143802
|
[18] |
李玉婷,马传国,欧气局,et al. 棒状纳米铁氧化物增强碳纤维_环氧树脂复合材料的层间性能[J]. 桂林电子科技大学学报,2017,37(6):508-512. doi: 10.3969/j.issn.1673-808X.2017.06.016LI Y T,MA C G,OU Q J,et al. Enhanced interlaminar properties of epoxy composites with iron oxide nanorods[J]. Journal of Guilin University of Electronic Technology,2017,37(6):508-512. doi: 10.3969/j.issn.1673-808X.2017.06.016
|
[19] |
CHEN G, MA C G, FU Z H, et al. Significantly enhancing fracture toughness of epoxy composite with promising γ-FeOOH@Fe2O3 hybrid nanoparticles by magnetic field assistance [J]. Nano Materials Science, 2021,https://doi.org/10.1016/j.nanoms.2021.08.001
|
[20] |
YIN J W,SHI H M,WU P,et al. Graphene-wrapped single-crystalline Fe3O4 nanorods with superior lithium-storage capabilities[J]. New Journal of Chemistry,2014,38(9):4036-4040. doi: 10.1039/C4NJ00767K
|
[21] |
陈官,马传国,王静,et al. 氧化石墨烯包覆羟基氧化铁协同增强环氧树脂的断裂韧性[J]. 工程塑料应用,2020,48(6):8-13. doi: 10.3969/j.issn.1001-3539.2020.06.002CHEN G,MA C G,WANG J,et al. Synergistic strengthening of fracture toughness of epoxy resin with graphene oxide coated with hydroxyl iron oxide[J]. Engineering Plastics Application,2020,48(6):8-13. doi: 10.3969/j.issn.1001-3539.2020.06.002
|
[22] |
CAO X H,DONG H F,TAN Y Z,et al. Investigation of synthesis and magnetic properties of rod-shaped CoFe2O4 via precipitation-topotactic reaction employing alpha-FeOOH and gamma-FeOOH as templates[J]. Journal Electronic Materials,2018,47(5):2920-2928. doi: 10.1007/s11664-018-6165-1
|
[23] |
NEFF D,BELLOT-GURLET L,DILLMANN P,et al. Raman imaging of ancient rust scales on archaeological iron artefacts for long-term atmospheric corrosion mechanisms study[J]. Journal of Raman Spectroscopy,2006,37(10):1228-37. doi: 10.1002/jrs.1581
|
[24] |
谢宗蕻,蔡书杰,郭奇,等. 碳纤维增强复合材料层间断裂韧度[J]. 航空材料学报,2018,38(4):6.XIE Z H,CAI S Q,GUO Q,et al. Interlaminar fracture toughness of carbon fiber reinforced composites[J]. Journal of Aeronautical Materials,2018,38(4):6.
|
[25] |
王雅娜,陈新文,龚愉. 复合材料0°/45°层间界面Ⅰ型、Ⅱ型和Ⅰ/Ⅱ混合型分层实验研究[J]. 航空材料学报,2018,38(6):6.WANG Y N,CHEN X W,GONG Y,et al. Experimental study on delamination of composite laminates with 0°/45° interface under mode I, mode II and mixed-mode I/II loading[J]. Journal of Aeronautical Materials,2018,38(6):6.
|