磁场作用下氧化石墨烯包覆羟基氧化铁增强碳纤维/环氧树脂复合材料的层间韧性

陈官 马传国 付泽浩 王静 王亚珍

陈官, 马传国, 付泽浩, 王静, 王亚珍. 磁场作用下氧化石墨烯包覆羟基氧化铁增强碳纤维/环氧树脂复合材料的层间韧性[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000152
引用本文: 陈官, 马传国, 付泽浩, 王静, 王亚珍. 磁场作用下氧化石墨烯包覆羟基氧化铁增强碳纤维/环氧树脂复合材料的层间韧性[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000152
CHEN Guan, MA Chuanguo, WANG Jing, FU Zehao, WANG Yazhen. Enhancing interlaminar fracture toughness of carbon fiber/epoxy resin composite with graphene oxide coated hydroxy iron oxide under magnetic field[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000152
Citation: CHEN Guan, MA Chuanguo, WANG Jing, FU Zehao, WANG Yazhen. Enhancing interlaminar fracture toughness of carbon fiber/epoxy resin composite with graphene oxide coated hydroxy iron oxide under magnetic field[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000152

磁场作用下氧化石墨烯包覆羟基氧化铁增强碳纤维/环氧树脂复合材料的层间韧性

doi: 10.11868/j.issn.1005-5053.2021.000152
基金项目: 国家自然科学基金项目(51763006);广西电子信息材料构效关系重点实验室开放研究基金(201018-K)
详细信息
    通讯作者:

    马传国(1978—),男,博士,教授,主要从事聚合物基复合材料的研究,联系地址:桂林电子科技大学材料科学与工程学院(541004),E-mail: machuanguo@guet.edu.cn

  • 中图分类号: TQ323.5

Enhancing interlaminar fracture toughness of carbon fiber/epoxy resin composite with graphene oxide coated hydroxy iron oxide under magnetic fieldstyle="padding-top:17.4pt"

  • 摘要: 为有效提高碳纤维/环氧树脂(CF/EP)复合材料层合板的层间韧性,采用静电自组装技术制备了一种由氧化石墨烯包覆针状羟基氧化铁而成的纳米复合粒子(GO@FeOOH),分散在EP基体中并借助磁场诱导以提高增韧效果。通过双悬臂梁实验(DCB)测试GO@FeOOH/CF/EP层合板的Ⅰ型层间韧性(GⅠC),重点考察复合粒子和磁场诱导对GⅠC的影响。结果表明: 仅质量分数0.5%的GO@FeOOH即可显著增强CF/EP复合材料的层间韧性,GO@FeOOH/CF/EP的初始裂纹GⅠC(0.53 kJ·m–2)和裂纹扩展GⅠC(0.71 kJ·m–2)较CF/EP分别提高了34.2%和44.9%,另一方面,磁场诱导使GO@FeOOH沿着磁场方向发生了取向,进一步显著提高了增韧效果,初始裂纹GⅠC和裂纹扩展GⅠC较CF/EP分别提高了112.6%和93.9%;该复合材料的层间增韧机理主要包括粒子的拔断与脱粘以及基体的局部塑性形变,磁场诱导后,粒子的拔断成为主导的增韧机理。

     

  • 图  1  GO@FeOOH/CF/EP (MF)复合材料制备流程示意图

    Figure  1.  Schematic diagram of preparation process of GO@FeOOH/CF/EP (MF) composite

    图  2  (a)FeOOH、GO@FeOOH的XPS谱图及(b)相应的Fe2p分析谱图

    Figure  2.  XPS spectra of FeOOH and GO@FeOOH  (a) and corresponding Fe2p spectra (b)

    图  3  FeOOH、GO及GO@FeOOH的拉曼谱图

    Figure  3.  Raman spectra of FeOOH, GO and GO@FeOOH

    图  4  SEM图 (a)FeOOH;(b)GO@FeOOH

    Figure  4.  SEM images  (a) FeOOH;(b) GO@FeOOH

    图  5  DCB实验中三种复合材料试样的典型载荷-加载点位移曲线

    Figure  5.  Curves of load vs. displacement of three composites specimens in DCB tests

    图  6  不同复合材料代表试样的GⅠC随裂纹增长的变化曲线

    Figure  6.  Curves of GⅠC vs. crack increment of three composite specimens

    图  7  三种复合材料的GⅠC对比图

    Figure  7.  Comparison diagram on GⅠC of three kinds of composites

    图  8  不同复合材料的Ⅰ型层间断裂面的SEM图  (a)CF/EP;(b),(c)GO@FeOOH/CF/EP;(d),(e)GO@FeOOH/CF/EP (MF)

    Figure  8.  SEM images of interlaminar fracture surfaces of different composites (a)CF/EP;(b),(c)GO@FeOOH/CF/EP,(d),(e)GO@FeOOH/CF/EP (MF)

    图  9  GO@FeOOH对复合材料基体断裂韧性的增强机理示意图 (a)无磁场诱导;(b)磁场诱导;(c)GO@FeOOH可能的失效形式

    Figure  9.  Enhancement mechanism of GO@FeOOH on fracture toughness of EP matrix  (a) no magnetic induction; (b) with magnetic induction; (c) possible failure modes of GO@FeOOH

  • [1] JAYAN J S,SARITHA A,JOSEPH K. Innovative materials of this era for toughening the epoxy matrix: A review[J]. Polymer Composites,2018,39(S4):E1959-E1986. doi: 10.1002/pc.24789
    [2] SHRIVASTAVA R,SINGH K K. Interlaminar fracture toughness characterization of laminated composites: a review[J]. Polymer Reviews,2020,60(3):542-593. doi: 10.1080/15583724.2019.1677708
    [3] LIU K W,MACOSKO C W. Can nanoparticle toughen fiber-reinforced thermosetting polymers?[J]. Journal Materials Science,2019,54(6):4471-4483. doi: 10.1007/s10853-018-03195-9
    [4] PRASAD V,SEKAR K,VARGHESE S,et al. Enhancing Mode I and Mode II interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2[J]. Composites Part A-Applied Science and Manufacturing,2019,124:105505-105515. doi: 10.1016/j.compositesa.2019.105505
    [5] 刘静,曹意林,李刚,et al. 激光对碳纤维及碳纤维/环氧树脂复合材料性能影响[J]. 复合材料学报,2018,35(11):2979-2986.

    LIU J,CAO Y L,LI G,et al. Effect of laser on properties of carbon fibre and carbon fibre/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2018,35(11):2979-2986.
    [6] WANG J,MA C G,CHEN G,et al. Interlaminar fracture toughness and conductivity of carbon fiber/epoxy resin composite laminate modified by carbon black-loaded polypropylene non-woven fabric interleaves[J]. Composite Structures,2020,234:111649-111657. doi: 10.1016/j.compstruct.2019.111649
    [7] 赵泽华,孙劲松,郭颖,et al. 聚酰亚胺颗粒层间增韧碳纤维/邻苯二甲腈树脂复合材料[J]. 复合材料学报,2021,38(3):732-740.

    ZHAO Z H,SUN J S,GUO Y,et al. Improving interlaminar toughness of carbon fiber/phthalonitrile composite via polyimide[J]. Acta Materiae Compositae Sinica,2021,38(3):732-740.
    [8] 谢志鹏,张会旗,原续波,et al. 环氧树脂增韧改性的研究进展[J]. 高分子通报,2018(11):1-16.

    XIE Z P,ZHANG H Q,YUAN X B,et al. Research process of toughening epoxy resin[J]. Polymer Bulletin,2018(11):1-16.
    [9] TSAI S N,CAROLAN D,SPRENGER S,et al. Fracture and fatigue behaviour of carbon fibre composites with nanoparticle-sized fibres[J]. Compos Struct,2019,217:143-149. doi: 10.1016/j.compstruct.2019.03.015
    [10] 胡小雨,蒋秋冉,魏毅,et al. 碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征[J]. 复合材料学报,2018,35(7):1691-1699.

    HU X Y,JIANG Q R,WEI Y,et al. Preparation and characterization of carbon fiber-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1691-1699.
    [11] MISHRA K,BASTOLA K P,SINGH R P,et al. Effect of graphene oxide on the interlaminar fracture toughness of carbon fiber/epoxy composites[J]. Polymer Engineering and Science,2019,59(6):1199-1208. doi: 10.1002/pen.25100
    [12] 韩潇,肇研,孙健明,et al. 氧化石墨烯/炭纤维/环氧树脂基复合材料的制备及其层间剪切性能(英文)[J]. 新型炭材料,2017,32(1):48-55. doi: 10.1016/S1872-5805(17)60107-0

    HAN X,ZHAO Y,SUN J M,et al. Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites[J]. New Carbon Materials,2017,32(1):48-55. doi: 10.1016/S1872-5805(17)60107-0
    [13] SHEN X J,DANG C Y,TANG B L,et al. The reinforcing effect of oriented graphene on the interlaminar shear strength of carbon fabric/epoxy composites[J]. Materials & Design,2020,185:108257-108264.
    [14] LADANI R B,WU S,KINLOCH A J,et al. Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carbon[J]. Materials & Design,2016,94:554-564.
    [15] BIN L,CAO S H,GAO N Y,et al. Thermosetting CFRP interlaminar toughening with multi-layers graphene and MWCNTs under mode I fracture[J]. Composites Science and Technology,2019,183:107829-107840. doi: 10.1016/j.compscitech.2019.107829
    [16] ZENG S H,SHEN M X,XUE Y J,et al. A novel strategy to reinforce glass fiber fabric/epoxy composites via modifying fibers with self-assembled multi-walled carbon nanotubes-montmorillonite[J]. Polymer Composites,2020,41(2):522-534. doi: 10.1002/pc.25384
    [17] YAN M L,JIAO W C,DING G M,et al. High strength and toughness epoxy nanocomposites reinforced with graphene oxide-nanocellulose micro/nanoscale structures[J]. Applied Surface Science,2019,497:143802-143810. doi: 10.1016/j.apsusc.2019.143802
    [18] 李玉婷,马传国,欧气局,et al. 棒状纳米铁氧化物增强碳纤维_环氧树脂复合材料的层间性能[J]. 桂林电子科技大学学报,2017,37(6):508-512. doi: 10.3969/j.issn.1673-808X.2017.06.016

    LI Y T,MA C G,OU Q J,et al. Enhanced interlaminar properties of epoxy composites with iron oxide nanorods[J]. Journal of Guilin University of Electronic Technology,2017,37(6):508-512. doi: 10.3969/j.issn.1673-808X.2017.06.016
    [19] CHEN G, MA C G, FU Z H, et al. Significantly enhancing fracture toughness of epoxy composite with promising γ-FeOOH@Fe2O3 hybrid nanoparticles by magnetic field assistance [J]. Nano Materials Science, 2021,https://doi.org/10.1016/j.nanoms.2021.08.001
    [20] YIN J W,SHI H M,WU P,et al. Graphene-wrapped single-crystalline Fe3O4 nanorods with superior lithium-storage capabilities[J]. New Journal of Chemistry,2014,38(9):4036-4040. doi: 10.1039/C4NJ00767K
    [21] 陈官,马传国,王静,et al. 氧化石墨烯包覆羟基氧化铁协同增强环氧树脂的断裂韧性[J]. 工程塑料应用,2020,48(6):8-13. doi: 10.3969/j.issn.1001-3539.2020.06.002

    CHEN G,MA C G,WANG J,et al. Synergistic strengthening of fracture toughness of epoxy resin with graphene oxide coated with hydroxyl iron oxide[J]. Engineering Plastics Application,2020,48(6):8-13. doi: 10.3969/j.issn.1001-3539.2020.06.002
    [22] CAO X H,DONG H F,TAN Y Z,et al. Investigation of synthesis and magnetic properties of rod-shaped CoFe2O4 via precipitation-topotactic reaction employing alpha-FeOOH and gamma-FeOOH as templates[J]. Journal Electronic Materials,2018,47(5):2920-2928. doi: 10.1007/s11664-018-6165-1
    [23] NEFF D,BELLOT-GURLET L,DILLMANN P,et al. Raman imaging of ancient rust scales on archaeological iron artefacts for long-term atmospheric corrosion mechanisms study[J]. Journal of Raman Spectroscopy,2006,37(10):1228-37. doi: 10.1002/jrs.1581
    [24] 谢宗蕻,蔡书杰,郭奇,等. 碳纤维增强复合材料层间断裂韧度[J]. 航空材料学报,2018,38(4):6.

    XIE Z H,CAI S Q,GUO Q,et al. Interlaminar fracture toughness of carbon fiber reinforced composites[J]. Journal of Aeronautical Materials,2018,38(4):6.
    [25] 王雅娜,陈新文,龚愉. 复合材料0°/45°层间界面Ⅰ型、Ⅱ型和Ⅰ/Ⅱ混合型分层实验研究[J]. 航空材料学报,2018,38(6):6.

    WANG Y N,CHEN X W,GONG Y,et al. Experimental study on delamination of composite laminates with 0°/45° interface under mode I, mode II and mixed-mode I/II loading[J]. Journal of Aeronautical Materials,2018,38(6):6.
  • 加载中
图(9)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-11-08
  • 网络出版日期:  2022-04-22

目录

    /

    返回文章
    返回