Co2+离子掺杂含量对Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷导电和吸波性能的影响

陈丹 周影影 杨鑫 曹楠楠 章杰勇 杨纪龙

陈丹, 周影影, 杨鑫, 曹楠楠, 章杰勇, 杨纪龙. Co2+离子掺杂含量对Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷导电和吸波性能的影响[J]. 航空材料学报, 2022, 42(6): 81-87. doi: 10.11868/j.issn.1005-5053.2021.000153
引用本文: 陈丹, 周影影, 杨鑫, 曹楠楠, 章杰勇, 杨纪龙. Co2+离子掺杂含量对Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷导电和吸波性能的影响[J]. 航空材料学报, 2022, 42(6): 81-87. doi: 10.11868/j.issn.1005-5053.2021.000153
CHEN Dan, ZHOU Yingying, YANG Xin, CAO Nannan, ZHANG Jieyong, YANG Jilong. Effects of Co2+ ion doping content on conductivities and microwave absorption properties of Li1.3+xAl0.3-xCoxTi1.7 (PO4)3 ceramics[J]. Journal of Aeronautical Materials, 2022, 42(6): 81-87. doi: 10.11868/j.issn.1005-5053.2021.000153
Citation: CHEN Dan, ZHOU Yingying, YANG Xin, CAO Nannan, ZHANG Jieyong, YANG Jilong. Effects of Co2+ ion doping content on conductivities and microwave absorption properties of Li1.3+xAl0.3-xCoxTi1.7 (PO4)3 ceramics[J]. Journal of Aeronautical Materials, 2022, 42(6): 81-87. doi: 10.11868/j.issn.1005-5053.2021.000153

Co2+离子掺杂含量对Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷导电和吸波性能的影响

doi: 10.11868/j.issn.1005-5053.2021.000153
基金项目: 陕西省自然科学基础研究计划项目(2021JQ-850);西安航空学院校级科研基金(2020KY0213);西安航空学院2021年省级大学生创新创业训练计划项目资助项目(S202111736030)
详细信息
    通讯作者:

    陈丹(1990—),女,博士,主要研究方向为吸波材料,E-mail:chendan900408@163.com

  • 中图分类号: TB34

Effects of Co2+ ion doping content on conductivities and microwave absorption properties of Li1.3+xAl0.3-xCoxTi1.7 (PO4)3 ceramics

  • 摘要: 采用高温固相法制备Li1.3+xAl0.3-xCoxTi1.7(PO4)3x=0、0.04、0.08、0.12)陶瓷,研究Co2+离子含量对其微观形貌、物相成分、导电性能、介电性能和吸波性能的影响规律。结果表明:Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷晶粒为立方状,相对密度均在90%以上,物相呈菱方LiTi2(PO4)3相,无杂质产生。Li1.34Al0.26Co0.04Ti1.7(PO4)3陶瓷具有最高的离子电导率1.14×10−3 S·cm−1,低价掺杂能够降低Li+离子与骨架离子间的束缚力,适量掺杂能够获得合适的Li+离子通道尺寸,从而使得Li+离子具有最小活化能0.29 eV,易产生热离子松弛极化,也就同时具有了最高的复介电常数,ε'为12.9~13.7,ε''为3.1~3.8;基于极化损耗和电导损耗的共同作用,Li1.34Al0.26Co0.04Ti1.7(PO4)3陶瓷具有较优的吸波性能,吸收带宽可覆盖整个X波段,最小反射率在9.67 GHz达到−17.3 dB,有望成为一种高温轻质吸波材料。

     

  • 图  1  Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷的微观断面形貌图  (a)x=0;(b)x=0.04;(c)x=0.08;(d)x=0.12

    Figure  1.  Cross-sections of Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics  (a) x=0; (b) x=0.04; (c) x=0.08; (d) x=0.12

    图  2  Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷的XRD图

    Figure  2.  XRD patterns of Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics

    图  3  Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷的常温交流阻抗谱

    Figure  3.  Typical impedance spectra of Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics

    图  4  Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷的阿伦尼乌斯曲线

    Figure  4.  Arrhenius curves of Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics

    图  5  Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷的复介电常数  (a)实部;(b)虚部

    Figure  5.  Complex permittivity of Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics  (a) real part;(b) imaginary part

    图  6  Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷的Cole-Cole图  (a)x=0;(b)x=0.04;(c)x=0.08;(d)x=0.12

    Figure  6.  Cole-Cole plots of Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics  (a) x=0; (b) x=0.04; (c) x=0.08;(d) x=0.12

    图  7  Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷在2.2 mm厚度的计算反射率

    Figure  7.  Calculated reflection loss of Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics in 2.2 mm

    表  1  Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷的计算点阵常数

    Table  1.   Calculated lattice parameters of Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics

    Samplea /nmc /nmβ /(º)V /nm3
    LATP0.85042.0523120.2041.2827
    Co0.040.85542.0673120.0961.3086
    Co0.080.86042.0830120.0031.3354
    Co0.120.86002.0829120.0091.3340
    下载: 导出CSV

    表  2  Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷的电性能参数

    Table  2.   Electrical characteristics of Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics

    SampleRgσg/(S·cm−1)Rgbσgb/(S·cm−1)Rσ/(S·cm−1)Rgb/R
    LATP176.879.00×10−4594.582.68×10−4771.452.06×10−40.77
    Co0.0447.943.44×10−396.651.70×10−3144.591.14×10−30.67
    Co0.0889.741.78×10−3752.682.13×10−4842.421.90×10−40.89
    Co0.12212.57.54×10−41829.78.75×10−52042.27.84×10−50.90
    下载: 导出CSV
  • [1] 胡悦,黄大庆,史有强,等. 耐高温陶瓷基结构吸波复合材料研究进展[J]. 航空材料学报,2019,39(5):1-12. doi: 10.11868/j.issn.1005-5053.2019.000139

    HU Y,HUANG D Q,SHI Y Q,et al. Research progress of high temperature microwave-absorbing ceramic matrix composites[J]. Journal of Aeronautical Materials,2019,39(5):1-12. doi: 10.11868/j.issn.1005-5053.2019.000139
    [2] JIA Z R,LIN K J,WU G L,et al. Recent progresses of high-temperature microwave-absorbing materials[J]. Nano,2018,13(6):1830005. doi: 10.1142/S1793292018300050
    [3] YANG Z,LI Z M,NING T. Microwave dielectric properties of B and N co-doped SiC nanopowders prepared by combustion synthesis[J]. Journal of Alloys and Compounds,2019,777:1039-1043. doi: 10.1016/j.jallcom.2018.11.067
    [4] ARYA M,GANDHI M N,PRABHU S S,et al. Effect of calcination temperature on structural and terahertz characterization of M-type barium ferrite[J]. AIP Advances,2020,10:105220. doi: 10.1063/5.0026101
    [5] CAI M,SHUI A Z,WANG X,et al. A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles[J]. Journal of Alloys and Compounds,2020,842:155638. doi: 10.1016/j.jallcom.2020.155638
    [6] CHAI J X,CHENG J Y,ZHANG D Q,et al. Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets[J]. Journal of Alloys and Compounds,2020,829(7):154531. doi: 10.1016/j.jallcom.2020.154531
    [7] 杨菁,刘高瞻,沈麟,等. NASICON结构钠离子固体电解质及固态钠电池应用研究进展[J]. 储能科学与技术,2020,9(5):1284-1299. doi: 10.19799/j.cnki.2095-4239.2020.0119

    YANG J,LIU G Z,SHEN L,et al. Research progress on nasicon-structured sodium solid electrolytes and their derived solid state sodium batteries[J]. Energy Storage Science and Technology,2020,9(5):1284-1299. doi: 10.19799/j.cnki.2095-4239.2020.0119
    [8] REDDY M V,JULIEN C M,MAUGER A,et al. Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: a review[J]. Nanomaterials,2020,10:1606. doi: 10.3390/nano10081606
    [9] RAJAGOPALAN R,ZHANG Z N,TANG Y G,et al. Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON material[J]. Energy Storage Materials,2021,34:171-193. doi: 10.1016/j.ensm.2020.09.007
    [10] YUSUKE N,KOKI N,HAUAMI T,et al. Computational and experimental investigation of the electrochemical stability and Li-ion conduction mechanism of LiZr2(PO4)3[J]. Chemistry Materials,2017,29:8983-8991. doi: 10.1021/acs.chemmater.7b01703
    [11] ZHAO X D,ZHANG Z H,ZHANG X,et al. Computational screening and first-principles investigations of NASICON-type LixM2(PO4)3 as solid electrolytes for Li batteries[J]. Journal of Materials Chemistry A,2018,6:2625-2631. doi: 10.1039/C7TA08968F
    [12] KOTHARI D H,KANCHAN D K. Effect of doping of trivalent cations Ga3+, Sc3+, Y3+ in Li1.3Al0.3Ti1.7(PO4)3 (LATP) system on Li+ ion conductivity[J]. Physica B,2016,501(11):90-94. doi: 10.1016/j.physb.2016.08.020
    [13] ZHAO E Q,GUO Y D,XU G R,et al. High ionic conductivity Y doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte[J]. Journal of Alloys and Compounds,2019,782:384-391. doi: 10.1016/j.jallcom.2018.12.183
    [14] ZHANG P,WANG H,SI Q,et al. High lithium ion conductivity solid electrolyte of chromium and aluminum co-doped NASICON-type LiTi2(PO4)3[J]. Solid State Ionics,2015,272:101-106. doi: 10.1016/j.ssi.2015.01.004
    [15] CHEN D,LUO F,ZHOU W C,et al. Influence of Nb5+, Ti4+, Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity[J]. Journal of Alloys and Compounds,2018,757:348-355. doi: 10.1016/j.jallcom.2018.05.116
    [16] KAO K C. Dielectric phenomena in solids[M]. Cambridge: Elsevier Academic Press, 2004.
    [17] CHEN D,LIU Y Z,LUO F,et al. NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramics with frequency dispersion effect and microwave absorption properties in 8.2-12.4GHz[J]. Journal of Material Science:Materials in Electronics,2020,31:13724-13729. doi: 10.1007/s10854-020-03931-5
    [18] LIU Y,LUO F,ZHOU W C,et al. Dielectric and microwave absorption properties of Ti3SiC2 powders[J]. Journal of Alloys and Compounds,2013,576:43-47. doi: 10.1016/j.jallcom.2013.04.137
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  23
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 录用日期:  2022-08-16
  • 修回日期:  2022-10-13
  • 网络出版日期:  2022-10-11
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回