Effects of Co2+ ion doping content on conductivities and microwave absorption properties of Li1.3+xAl0.3-xCoxTi1.7 (PO4)3 ceramics
-
摘要: 采用高温固相法制备Li1.3+xAl0.3-xCoxTi1.7(PO4)3(x=0、0.04、0.08、0.12)陶瓷,研究Co2+离子含量对其微观形貌、物相成分、导电性能、介电性能和吸波性能的影响规律。结果表明:Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷晶粒为立方状,相对密度均在90%以上,物相呈菱方LiTi2(PO4)3相,无杂质产生。Li1.34Al0.26Co0.04Ti1.7(PO4)3陶瓷具有最高的离子电导率1.14×10−3 S·cm−1,低价掺杂能够降低Li+离子与骨架离子间的束缚力,适量掺杂能够获得合适的Li+离子通道尺寸,从而使得Li+离子具有最小活化能0.29 eV,易产生热离子松弛极化,也就同时具有了最高的复介电常数,ε'为12.9~13.7,ε''为3.1~3.8;基于极化损耗和电导损耗的共同作用,Li1.34Al0.26Co0.04Ti1.7(PO4)3陶瓷具有较优的吸波性能,吸收带宽可覆盖整个X波段,最小反射率在9.67 GHz达到−17.3 dB,有望成为一种高温轻质吸波材料。Abstract: Li1.3+xAl0.3-xCoxTi1.7(PO4)3 (x=0, 0.04, 0.08, 0.12) ceramics were prepared by high temperature solid-state method. The effects of Co2+ ion doping content on the morphology, phase, ion conductivity, dielectric property and microwave absorption property were studied. Results show that Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics had cubic grains with relative densities of 90%, and they are single rhombohedral LiTi2(PO4)3 phase without any impurity. Li1.34Al0.26Co0.04Ti1.7(PO4)3 ceramic has the highest ionic conductivity of 1.14×10−3 S·cm−1. A lower valent cation occupying the Ti(Al) site can reduce the coulombic repulsion between Li+ ions and skeleton ions, and appropriate doping content can obtain suitable size of Li+ ions channel. Then, Li+ ion has a minimum activation energy of 0.29 eV, which is easy to generate thermal ion relaxation polarization. Therefore, Li1.34Al0.26Co0.04Ti1.7(PO4)3 ceramic also has the highest complex permittivity, ε' is 12.9-13.7 and ε" is 3.1-3.8. In addition, due to the combined effect of polarization loss and conductance loss, it has the optimum microwave absorption property of an absorption bandwidth covering the whole X-band and a minimum reflection loss of −17.3 dB at 9.67 GHz, which is a potential candidate of high-temperature lightweight microwave absorption material.
-
Key words:
- ion doping /
- LATP ceramics /
- dielectric property /
- microwave absorption property
-
表 1 Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷的计算点阵常数
Table 1. Calculated lattice parameters of Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics
Sample a /nm c /nm β /(º) V /nm3 LATP 0.8504 2.0523 120.204 1.2827 Co0.04 0.8554 2.0673 120.096 1.3086 Co0.08 0.8604 2.0830 120.003 1.3354 Co0.12 0.8600 2.0829 120.009 1.3340 表 2 Li1.3+xAl0.3-xCoxTi1.7(PO4)3陶瓷的电性能参数
Table 2. Electrical characteristics of Li1.3+xAl0.3-xCoxTi1.7(PO4)3 ceramics
Sample Rg/Ω σg/(S·cm−1) Rgb/Ω σgb/(S·cm−1) R/Ω σ/(S·cm−1) Rgb/R LATP 176.87 9.00×10−4 594.58 2.68×10−4 771.45 2.06×10−4 0.77 Co0.04 47.94 3.44×10−3 96.65 1.70×10−3 144.59 1.14×10−3 0.67 Co0.08 89.74 1.78×10−3 752.68 2.13×10−4 842.42 1.90×10−4 0.89 Co0.12 212.5 7.54×10−4 1829.7 8.75×10−5 2042.2 7.84×10−5 0.90 -
[1] 胡悦,黄大庆,史有强,等. 耐高温陶瓷基结构吸波复合材料研究进展[J]. 航空材料学报,2019,39(5):1-12. doi: 10.11868/j.issn.1005-5053.2019.000139HU Y,HUANG D Q,SHI Y Q,et al. Research progress of high temperature microwave-absorbing ceramic matrix composites[J]. Journal of Aeronautical Materials,2019,39(5):1-12. doi: 10.11868/j.issn.1005-5053.2019.000139 [2] JIA Z R,LIN K J,WU G L,et al. Recent progresses of high-temperature microwave-absorbing materials[J]. Nano,2018,13(6):1830005. doi: 10.1142/S1793292018300050 [3] YANG Z,LI Z M,NING T. Microwave dielectric properties of B and N co-doped SiC nanopowders prepared by combustion synthesis[J]. Journal of Alloys and Compounds,2019,777:1039-1043. doi: 10.1016/j.jallcom.2018.11.067 [4] ARYA M,GANDHI M N,PRABHU S S,et al. Effect of calcination temperature on structural and terahertz characterization of M-type barium ferrite[J]. AIP Advances,2020,10:105220. doi: 10.1063/5.0026101 [5] CAI M,SHUI A Z,WANG X,et al. A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles[J]. Journal of Alloys and Compounds,2020,842:155638. doi: 10.1016/j.jallcom.2020.155638 [6] CHAI J X,CHENG J Y,ZHANG D Q,et al. Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets[J]. Journal of Alloys and Compounds,2020,829(7):154531. doi: 10.1016/j.jallcom.2020.154531 [7] 杨菁,刘高瞻,沈麟,等. NASICON结构钠离子固体电解质及固态钠电池应用研究进展[J]. 储能科学与技术,2020,9(5):1284-1299. doi: 10.19799/j.cnki.2095-4239.2020.0119YANG J,LIU G Z,SHEN L,et al. Research progress on nasicon-structured sodium solid electrolytes and their derived solid state sodium batteries[J]. Energy Storage Science and Technology,2020,9(5):1284-1299. doi: 10.19799/j.cnki.2095-4239.2020.0119 [8] REDDY M V,JULIEN C M,MAUGER A,et al. Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: a review[J]. Nanomaterials,2020,10:1606. doi: 10.3390/nano10081606 [9] RAJAGOPALAN R,ZHANG Z N,TANG Y G,et al. Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON material[J]. Energy Storage Materials,2021,34:171-193. doi: 10.1016/j.ensm.2020.09.007 [10] YUSUKE N,KOKI N,HAUAMI T,et al. Computational and experimental investigation of the electrochemical stability and Li-ion conduction mechanism of LiZr2(PO4)3[J]. Chemistry Materials,2017,29:8983-8991. doi: 10.1021/acs.chemmater.7b01703 [11] ZHAO X D,ZHANG Z H,ZHANG X,et al. Computational screening and first-principles investigations of NASICON-type LixM2(PO4)3 as solid electrolytes for Li batteries[J]. Journal of Materials Chemistry A,2018,6:2625-2631. doi: 10.1039/C7TA08968F [12] KOTHARI D H,KANCHAN D K. Effect of doping of trivalent cations Ga3+, Sc3+, Y3+ in Li1.3Al0.3Ti1.7(PO4)3 (LATP) system on Li+ ion conductivity[J]. Physica B,2016,501(11):90-94. doi: 10.1016/j.physb.2016.08.020 [13] ZHAO E Q,GUO Y D,XU G R,et al. High ionic conductivity Y doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte[J]. Journal of Alloys and Compounds,2019,782:384-391. doi: 10.1016/j.jallcom.2018.12.183 [14] ZHANG P,WANG H,SI Q,et al. High lithium ion conductivity solid electrolyte of chromium and aluminum co-doped NASICON-type LiTi2(PO4)3[J]. Solid State Ionics,2015,272:101-106. doi: 10.1016/j.ssi.2015.01.004 [15] CHEN D,LUO F,ZHOU W C,et al. Influence of Nb5+, Ti4+, Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity[J]. Journal of Alloys and Compounds,2018,757:348-355. doi: 10.1016/j.jallcom.2018.05.116 [16] KAO K C. Dielectric phenomena in solids[M]. Cambridge: Elsevier Academic Press, 2004. [17] CHEN D,LIU Y Z,LUO F,et al. NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramics with frequency dispersion effect and microwave absorption properties in 8.2-12.4GHz[J]. Journal of Material Science:Materials in Electronics,2020,31:13724-13729. doi: 10.1007/s10854-020-03931-5 [18] LIU Y,LUO F,ZHOU W C,et al. Dielectric and microwave absorption properties of Ti3SiC2 powders[J]. Journal of Alloys and Compounds,2013,576:43-47. doi: 10.1016/j.jallcom.2013.04.137 -