工艺参数对铝合金摩擦挤压增材组织及性能的影响

唐文珅 杨新岐 田超博 徐永生

唐文珅, 杨新岐, 田超博, 徐永生. 工艺参数对铝合金摩擦挤压增材组织及性能的影响[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000166
引用本文: 唐文珅, 杨新岐, 田超博, 徐永生. 工艺参数对铝合金摩擦挤压增材组织及性能的影响[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000166
TANG Wenshen, YANG Xinqi, TIAN Chaobo, XU Yongsheng. Effects of process parameters on the microstructure and properties of aluminum alloy fabricated by friction extrusion additive manufacturing[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000166
Citation: TANG Wenshen, YANG Xinqi, TIAN Chaobo, XU Yongsheng. Effects of process parameters on the microstructure and properties of aluminum alloy fabricated by friction extrusion additive manufacturing[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000166

工艺参数对铝合金摩擦挤压增材组织及性能的影响

doi: 10.11868/j.issn.1005-5053.2021.000166
基金项目: 国家自然科学基金(51775371,52175356);天津市自然科学基金重点资助项目(19JCZDJC39200)
详细信息
    通讯作者:

    杨新岐(1962—),男,博士,教授,研究方向:固相摩擦焊接与增材制造技术、焊接结构疲劳断裂及完整性评定、材料加工过程数值模拟,联系地址:天津市津南区天津大学北洋园校区材料科学与工程学院(300354),E-mail: xqyang@tju.edu.cn

  • 中图分类号: TG453+.9

Effects of process parameters on the microstructure and properties of aluminum alloy fabricated by friction extrusion additive manufacturing

  • 摘要: 采用6061-T651铝合金圆棒进行摩擦挤压增材制造(friction extrusion additive manufacturing,FEAM )工艺实验研究,探讨和分析不同主轴转速对单道双层增材试样的增材成形、组织特征和力学性能的影响规律。结果表明:对给定横向移动速度300 mm/min,采用主轴转速为600 r/min和800 r/min均能获得完全致密无任何内部缺陷厚度分别为2 mm和4 mm的单道双层增材试样,增材整体由细小等轴晶粒组成,增材层间实现冶金连接;800 r/min下工具轴肩的摩擦挤压作用降低,增材层间结合界面呈平直状,塑化金属流动不充分,沉积层宽度较窄、表面成形更粗糙;600 r/min下结合界面经历的塑性变形和热循环更为显著,晶粒细化至6.0 μm,但增材界面区软化程度较严重,硬度仅为增材棒料母材的52.7%~56.2%,而800 r/min下界面区的硬度能够达到母材的56.0%~61.3%;在600 r/min和800 r/min下,增材试样均具有优良的综合力学性能,抗拉强度分别达到增材棒料母材6061-T651的66%和70%,而断后伸长率明显较高分别为母材的212%和169%;与目前其他增材工艺力学性能比较均具有明显的优势。

     

  • 图  1  FEAM工艺过程示意 (a)增材开始;(b)第一层沉积结束;(c)第二层沉积结束;(d)实际增材过程

    Figure  1.  Schematic diagrams of FEAM process  (a)incipience stage;(b)the first layer deposition completed; (c)the second layer deposition completed;(d)example of FEAM process

    图  2  成形件拉伸试样尺寸

    Figure  2.  Tensile specimen dimension of formed part

    图  3  不同转速下成形件沉积形貌

    Figure  3.  Morphologies of deposited specimens under different rotational speeds (a)600 r/min;(b)800 r/min

    图  4  不同转速下成形件宏观形貌

    Figure  4.  Macro views of deposited specimens under different rotational speeds  (a)600 r/min;(b)800 r/min

    图  5  6061-T651铝合金母材 (a)金相组织;(b)透射照片

    Figure  5.  As-received 6061-T651 aluminum alloy  (a) OM image;(b) TEM image

    图  6  不同转速下成形件不同区域金相组织 (a)第二层;(b)近界面处;(c)第一层;(1)600 r/min;(2)800 r/min

    Figure  6.  OM images of the deposited specimens in different zones under different rotational speeds  (a) second layer; (b) near interface (c) first layer (1) 600 r/min; (2) 800 r/min

    图  7  不同转速下成形件近界面透射照片及能谱分析结果 (a)600 r/min ;(b)800 ;(c)能谱点扫分析结果(600 r/min );(d)能谱点扫分析结果(800 r/min )

    Figure  7.  TEM images and EDS analysis results near the interface of the deposited specimens under different rotational speeds  (a) 600 rpm;(b) 800 rpm;(c) EDS point analysis results (600 rpm) ;(d) EDS point analysis results (800 rpm)

    图  8  不同转速下成形件沿厚度方向硬度分布

    Figure  8.  Hardness profile along build direction in deposited specimens under different rotational speeds

    图  9  不同转速下成形件 (a)工程应力-应变曲线;(b)拉伸性能

    Figure  9.  Deposited specimens under different rotational speeds  (a)engineering stress-strain curves;(b)tensile properties

    图  10  FEAM与其他增材制造工艺制备的Al-Mg-Si合金力学性能对比

    Figure  10.  Comparison of mechanical properties of Al-Mg-Si alloy fabricated by FEAM and other additive manufacturing processes

    表  1  6061-T651铝合金化学成分(质量分数/%)

    Table  1.   Chemical composition of 6061-T651 aluminum alloy (mass fraction/%).

    SiFeCuMnMgCrTiAl
    0.540.10.280.120.90.180.04Bal
    下载: 导出CSV

    表  2  不同转速下成形件每层层宽和层厚

    Table  2.   Width and thickness of each layer of deposited specimens under different rotational speeds

    Rotational speed/(r·min−1LayerW /mmT /mm
    600First29.121.51-2.01
    Second34.123.84-4.47
    800First29.581.98
    Second32.653.99
    下载: 导出CSV

    表  3  不同转速下成形件不同区域晶粒平均尺寸

    Table  3.   Average grain size of the deposited specimens in different zones under different rotational speeds

    Rotational speed/(r·min−1PositionGrain size/μm
    0(Base metal)Starting material24.2±5.3
    600Second layer7.1±1.5
    Interface zone6.0±1.8
    First layer8.6±1.7
    800Second layer9.2±1.6
    Interface zone9.0±1.9
    First layer10.8±2.1
    下载: 导出CSV

    表  4  不同转速下成形件不同区域平均硬度

    Table  4.   Average hardness of the deposited specimens in different zones under different rotational speeds

    Rotational speed/(r•min−1PositionHardness/HV
    ASMiddleRS
    0(Base metal)Starting material111.3
    600First layer65.2±1.762.6±2.163.6±3.1
    Interface zone61.5±5.658.7±1.562.6±3.2
    Second layer77.4±4.576.8±5.976.0±6.8
    800First layer67.7±3.662.3±0.964.1±3.5
    Interface zone66.9±6.662.3±2.768.2±4.6
    Second layer78.3±3.378.6±4.079.0±4.2
    下载: 导出CSV
  • [1] RIVERA O G,ALLISON P G,JORDON J B,et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing[J]. Materials Science and Engineering A,2017,694(March):1-9.
    [2] YU H Z,JONES M E,BRADY G W,et al. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition[J]. Scripta Materialia,2018,153:122-130. doi: 10.1016/j.scriptamat.2018.03.025
    [3] YU H Z,MISHRA R S. Additive friction stir deposition: a deformation processing route to metal additive manufacturing[J]. Materials Research Letters,2021,9(2):71-83. doi: 10.1080/21663831.2020.1847211
    [4] 杨胶溪,吴文亮,王长亮,等. 激光选区熔化技术在航空航天领域的发展现状及典型应用[J]. 航空材料学报,2021,41(2):1-15. doi: 10.11868/j.issn.1005-5053.2020.000158

    YANG J X,WU WL,WANG CL. Development status and typical application of selective laser melting technology applications in aerospace field[J]. Journal of Aeronautical Materials,2021,41(2):1-15. doi: 10.11868/j.issn.1005-5053.2020.000158
    [5] 郜庆伟, 赵健, 舒凤远, 等. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.

    GAO Q W, ZHAO J, SHU F Y, et al. Research progress in aluminum alloy additive manufacturing. Journal of Materials Engineering, 2019, 47(11): 32-42.
    [6] RIVERA O G,ALLISON P G,BREWER L N,et al. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition[J]. Materials Science and Engineering A,2018,724:547-558. doi: 10.1016/j.msea.2018.03.088
    [7] PERRY M E J,GRIFFITHS R J,GARCIA D,et al. Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition[J]. Additive Manufacturing,2020,35:101293. doi: 10.1016/j.addma.2020.101293
    [8] PHILLIPS B J,AVERY D Z,LIU T,et al. Microstructure-deformation relationship of additive friction stir-deposition Al–Mg–Si[J]. Materialia,2019,7:100387.
    [9] GRIFFITHS R J,PERRY M E J,SIETINS J M,et al. A Perspective on Solid-State Additive Manufacturing of Aluminum Matrix Composites Using MELD[J]. Journal of Materials Engineering and Performance,2019,28(2):648-656. doi: 10.1007/s11665-018-3649-3
    [10] GRIFFITHS R J, GARCIA D, SONG J, et al. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: Process-microstructure linkages[J]. Materialia, 2021, 15(November 2020): 100967.
    [11] SRIDHARAN N,GUSSEV M,SEIBERT R,et al. Rationalization of anisotropic mechanical properties of Al-6061 fabricated using ultrasonic additive manufacturing[J]. Acta Materialia,2016,117:228-237. doi: 10.1016/j.actamat.2016.06.048
    [12] MAISONNETTE D,SUERY M,NELIAS D,et al. Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy[J]. Materials Science and Engineering A,2011,528(6):2718-2724. doi: 10.1016/j.msea.2010.12.011
    [13] 杨晓琨,熊柏青,李锡武,等. Li含量对Al-Mg-Si合金时效析出行为的影响[J]. 材料工程,2021,49(06):100-108.

    YANG X K,XIONG B Q,LI X W,et al. Effect of Li content on ageing precipitation behavior of Al-Mg-Si alloy[J]. Journal of Materials Engineering,2021,49(06):100-108.
    [14] GRIFFITHS R J,GARCIA D,SONG J,et al. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: Process-microstructure linkages[J]. Materialia,2021,15:100967. doi: 10.1016/j.mtla.2020.100967
    [15] GUSSEV M N,SRIDHARAN N,THOMPSON Z,et al. Influence of hot isostatic pressing on the performance of aluminum alloy fabricated by ultrasonic additive manufacturing[J]. Scripta Materialia,2018,145:33-36. doi: 10.1016/j.scriptamat.2017.10.004
    [16] UDDIN S Z,MURR L E,TERRAZAS C A,et al. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing[J]. Additive Manufacturing,2018,22:405-415. doi: 10.1016/j.addma.2018.05.047
    [17] 张睿泽,从保强,齐铂金,等. Al–Mg–Si 合金电弧熔丝增材构件组织与性能[J]. 航空制造技术,2019,65(5):80-87.

    ZHANG R Z,CONG B Q,QI B J,et al. Microstructure and tensile properties of double–wire + arc additive manufactured Al–Mg–Si Alloy[J]. Aeronautical Manufacturing Technology,2019,65(5):80-87.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  18
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2021-11-03
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回