Effect of thermodynamic coupled simulation condition on microstructure and stress rupture properties of DZ406 alloy
-
摘要: 在高温长期服役条件下高温合金涡轮叶片的组织存在老化和性能退化问题。通过对DZ406合金试样进行预先加载处理,模拟涡轮叶片的高温服役环境,热力耦合模拟条件分别为980 ℃/70 MPa,980 ℃/110 MPa,980 ℃/140 MPa与980 ℃/180 MPa,再对试样进行980 ℃/275 MPa持久实验。观察分析不同服役载荷条件下试样的显微组织和980 ℃/275 MPa持久寿命。结果表明:DZ406合金标准热处理组织由碳化物、残余(γ+γ´)共晶和规则立方状的γ´相组成;在模拟服役条件热力耦合作用下,随着服役载荷应力的增加,合金的共晶和碳化物形貌及尺寸无明显变化,平行于[001]方向试样的γ´相呈现不同程度的筏排化,垂直于[001]方向截面的γ´相尺寸明显增大;随着服役载荷应力的增加,不同热力耦合作用试样的剩余持久寿命迅速降低。
-
关键词:
- 定向高温合金DZ406 /
- 热力耦合模拟 /
- 持久寿命 /
- 筏排化
Abstract: There is a problem about microstructure evolution and properties degradation for the superalloy turbine blades in long term service conditions. DZ406 alloy samples were pre-loaded to simulate the high temperature service environment of turbine blades. The thermodynamic coupling simulation conditions were 980 ℃/70 MPa, 980 ℃/110 MPa, 980 ℃/140 MPa and 980 ℃/180 MPa respectively. And then the samples were subjected to stress rupture property test at 980 ℃/275 MPa. The microstructure and 980 ℃/275 MPa rupture life of the samples under different service loading conditions were observed and analyzed. The results show that the heat treatment microstructure of DZ406 alloy is composed of carbides, residual γ +γ´ eutectic and regular γ´ phase. The morphology and size of carbides and eutectic have no obvious change with the increase of loading stress under simulated service conditions. The γ´ phase of the sample parallel to [001] direction presents different degrees of rafting, and the size of γ´ phase perpendicular to [001] direction obviously increases. The residual stress rupture life of the sample declines rapidly with the increase of service stress. -
图 2 980 ℃/70 MPa条件下时效500 h的显微组织 (a)垂直[001]取向的碳化物和共晶相;(b)平行[001]取向的碳化物和共晶相;(c)垂直[001]取向的枝晶干γ´相;(d)平行[001]取向的枝晶干γ´相
Figure 2. Microstructures of the alloy after aging at 980 ℃/70 MPa for 500 h (a) carbides and eutectic perpendicular to [001] direction;(b) carbides and eutectic parallel to [001] direction; (c) γ´ phase at the dendrite perpendicular to [001] direction;(d) γ´ phase at the dendrite parallel to [001] direction
图 3 980 ℃/110 MPa条件下时效500 h的显微组织 (a)垂直[001]取向的碳化物和共晶相;(b)平行[001]取向的碳化物和共晶相;(c)垂直[001]取向的枝晶干γ´相;(d)平行[001]取向的枝晶干γ´相
Figure 3. Microstructures of the alloy after aging at 980 ℃/110 MPa for 500 h (a) carbides and eutectic perpendicular to [001] direction;(b) carbides and eutectic parallel to [001] direction; (c) γ´ phase at the dendrite perpendicular to [001] direction;(d) γ´ phase at the dendrite parallel to [001] direction
图 4 980 ℃/140 MPa条件下时效500 h的显微组织 (a)垂直[001]取向的碳化物和共晶相;(b)平行[001]取向的碳化物和共晶相;(c)垂直[001]取向的枝晶干γ´相;(d)平行[001]取向的枝晶干γ´相
Figure 4. Microstructures of the alloy after aging at 980 ℃/140 MPa for 500 h (a) carbides and eutectic perpendicular to [001] direction;(b) carbides and eutectic parallel to [001] direction; (c) γ´ phase at the dendrite perpendicular to [001] direction;(d) γ´ phase at the dendrite parallel to [001] direction
图 5 980 ℃/180 MPa条件下时效500 h的显微组织 (a)垂直[001]取向的碳化物和共晶相;(b)平行[001]取向的碳化物和共晶相;(c)垂直[001]取向的枝晶干γ´相;(d)平行[001]取向的枝晶干γ´相
Figure 5. Microstructure of the alloy after aging at 980 ℃/180 MPa for 500 h (a) carbides and eutectic perpendicular to [001] direction;(b) carbides and eutectic parallel to [001] direction; (c) γ´ phase at the dendrite perpendicular to [001] direction;(d) γ´ phase at the dendrite parallel to [001] direction
图 7 模拟服役条件下试样持久性能断口宏观形貌 (a)980 ℃/70 MPa断口正面; (b)980 ℃/70 MPa断口侧面; (c)980 ℃/140 MPa断口正面; (d)980 ℃/140 MPa断口侧面
Figure 7. Fractograph macro-morphologies of stress rupture of the samples at the simulated service environment (a) 980 ℃/70 MPa, fracture frontage; (b) 980 ℃/70 MPa, fracture profile; (c) 980 ℃/140 MPa, fracture frontage; (d) 980 ℃/140 MPa, fracture profile
图 8 模拟服役载荷试样断口形貌 (a)980 ℃/70 MPa,低倍; (b)980 ℃/70 MPa,高倍;(c)980 ℃/140 MPa,低倍; (d)980 ℃/140 MPa,高倍
Figure 8. Fracture morphologies of samples at the simulated service environment (a) 980 ℃/70 MPa, low magnification; (b) 980 ℃/70 MPa, high magnification; (c) 980 ℃/140 MPa, low magnification; (d) 980 ℃/140 MPa, high magnification
表 1 DZ406合金的化学成分(质量分数/%)
Table 1. Nominal chemical compositions of DZ406 alloy (mass fraction/%).
Cr Co W Al Ta Mo Re Hf B C Ni 6.5-7.0 11.4-12.1 4.7-5.1 5.8-6.3 6.1-6.5 1.3-1.7 2.6-3.0 1.3-1.7 0.01-0.02 0.08-0.14 Bal 表 2 筏状γ´相垂直[001]方向的厚度尺寸测量结果
Table 2. Rafted γ´ thickness perpendicular to [001] orientation
Simulated service
sampleγ´ thickness
1/nmγ´thickness
2/nmγ´thickness
3/nmγ´thickness
4/nmγ´thickness
5/nmMean
value/nm180 MPa 648.1 688.0 527.6 634.2 485.8 596.7 140 MPa 594.2 649.7 702.0 647.5 634.2 645.5 110 MPa 716.1 569.1 582.9 675.0 664.4 641.5 70 MPa 612.4 553.1 418.4 522.8 584.0 538.1 表 3 模拟服役环境条件下试样的980 ℃/275 MPa剩余持久寿命
Table 3. 980 ℃/275 MPa residual stress rupture lives of sample at the simulated service environment
Load condition Sample group 1 Sample group 2 Sample group 3 Average value 180 MPa 8.8 h 1.2 h — 5 h 140 MPa 15.3 h 17.3 h 20.4 h 17.7 h 110 MPa 14.8 h 23.2 h 20.6 h 19.5 h 70 MPa 35.3 h 24.2 h 31.8 h 30.4 h -
[1] CARON P,KHAN T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerospace Science Technology,1999,3:513-523. doi: 10.1016/S1270-9638(99)00108-X [2] WALSTON S, CETEL A, MACKAY R, et al. Joint development of a fourth generation single crystal superalloy [C]//Superalloys. Pennsylvania, PA: TMS, 2004: 15-24. [3] 西姆斯C T, 斯特劳夫 N S , 黑格尔 W C. 高温合金-宇航与工业动力用的高温材料[M]. 大连: 大连理工大学出版社, 1992: 134-137.SIMS C T, STOLOFF N S, HAGEL W C. Superalloys II—high temperature materials for aerospace and industrial power[M]. Dalian: Dalian University of Technology Press, 1992: 134-137. [4] 黄朝晖,贾新云,谭永宁,等. 第二代定向高温合金DZ6热处理研究[J]. 航空材料学报,2008,28(6):1-4.HUAGN Z H,JIA X Y,TAN Y N,et al. Study on heat treatment of second generation DS superalloy DZ6[J]. Journal of Aeronautical Materials,2008,28(6):1-4. [5] 黄朝晖, 谭永宁, 贾新云等. 第二代定向凝固柱晶高温合金DZ406 [C]//第十一届中国高温合金年会论文集.上海: [s.n.] , 2007: 384-388.HUAGN Z H, TAN Y N, JIA X Y, et al. The second generation directionally solidified superalloy DZ406 [C]//The 11th Annual Symposium on Superalloys in China.Shanghai: [s.n.], 2007: 384-388. [6] 李秋良,周鑫,王学德,等. DZ125 高温合金涡轮叶片的性能恢复热处理[J]. 金属热处理,2019,44(5):72-75.LI Q L,ZHOU X,WANG X D,et al. Performance recovery heat treatment of DZ125 superalloy turbine blade[J]. Hrat Treatment of Metals,2019,44(5):72-75. [7] OHTA Y,YOSHIZAWA H,NAKAGAWA Y G. Microstructural change in a Ni-base superalloy during service [J]. Scripta Metallurgica,1989,23(9):1609-1614. doi: 10.1016/0036-9748(89)90138-5 [8] 黄朝晖, 谭永宁, 贾新云. 第二代定向高温合金DZ406的长期时效研究[J]. 材料工程, 2009(增刊1): 105-109.HUAGN Z H, TAN Y N, JIA X Y, et al. Study on long-term aging of the second generation DS superalloy DZ406 [J]. Journal of Materials Engineering, 2009. (Suppl1): 105-109. [9] 宁礼奎, 郑志, 刘恩泽. 长期时效对DZ406合金组织和力学性能的影响[J]. 材料工程, 2010(增刊1): 327-331.NING L K, ZHENG Z, LIU E Z, et al. Effect of microstructure and properties of DZ406 superalloy after long term aging at high temperature[J]. Journal of Materials Engineering, 2010. (Suppl1): 327-331. [10] SHI Z X,LI J R,LIU S Z. Effect of long term aging on microstructure and stress rupture properties of a nickel based single crystal superalloy[J]. Progress in Natural Science:Materials International,2012,22(5):426-4323. doi: 10.1016/j.pnsc.2012.10.004 [11] TIAN S G,ZHANG J H,ZHOU H H,et al. Aspects of primary creep of a single crystal nickel-base superalloy [J]. Materials Science and Engineering: A,1999,262:271-278. doi: 10.1016/S0921-5093(98)00990-3 [12] FREDHOLN A, STRUDEL J L. On the creep resistance of some nickel base single crystal superalloy [C]//Superalloys1984.Pennsylvania: Warrrendale, 1984. 211-220. [13] 周晓明,夏鹏成. 一种定向高温合金在持久过程中的组织变化及其断口分析[J]. 失效分析与预防,2008,3(2):1-5. doi: 10.3969/j.issn.1673-6214.2008.02.001ZHOU X M,XIA P C. Microstructure evolution and fractograph analysis of a directionally solidified alloy during stress rupture test[J]. Journal of Failure Analysis and Prevention,2008,3(2):1-5. doi: 10.3969/j.issn.1673-6214.2008.02.001 [14] 刘丽荣,金涛,赵乃仁,等. 一种Ni基单晶高温合金[001]方向的持久性能与断裂行为[J]. 金属学报,2004,40(8):858-862. doi: 10.3321/j.issn:0412-1961.2004.08.014LIU L R,JIN T,ZHAO N R,et al. Stress rupture properties and fracture behavior of a Ni base single crystal superalloy along [001] direction[J]. Acta Metallurgica Sinica,2004,40(8):858-862. doi: 10.3321/j.issn:0412-1961.2004.08.014 [15] SHI Z X,LIU S Z,LI J R. Rejuvenation heat treatment of the second generation single crystal superalloy DD6[J]. Acta Metallurgica Sinica (English Letters),2015,28(10):1278-1285. doi: 10.1007/s40195-015-0323-8 [16] AGHAIE-SIMONETTI M. HAJJAVADY M The effect of thermal exposure on the properties of a Ni-base superalloy[J]. Materials Science and Engineering: A,2008,487:388-393. doi: 10.1016/j.msea.2007.11.010 [17] JACKON J J,DONACHIE M J,HENRICKS R J. Effect of amount of fine γ´ particle on creep property for DS MarM200 + Hf superalloy[J]. Metallurgical Transaction A,1977,8(10):1-9. -