Design, fabrication and properties of sandwich composites with metamaterial absorbers integrated
-
摘要: 为了获得一种兼具吸波性能和一定力学承载性能的复合材料,将超材料吸波体与夹芯复合材料相结合。通过仿真设计出满足双频带、宽频带电磁波吸收的超材料吸波体,对其吸波性能进行表征。而后将双频带、宽频带超材料吸波体分别嵌入以玻璃纤维/环氧树脂复合材料为上面板、聚甲基丙烯酰亚胺(PMI)泡沫为芯层、碳纤维/环氧树脂复合材料为下面板的夹芯复合结构中,形成夹芯复合材料。对最终的夹芯复合材料进行吸波性能测试,结果表明:双频带夹芯复合材料在8.65 GHz和10.30 GHz下的电磁吸波率分别达到94.13%和99.99%,宽频带夹芯复合材料在8.25~11.61 GHz的频段范围内的电磁吸波率为90.02%~99.91%。弯曲性能测试结果显示,双频带夹芯复合材料的弯曲强度和模量分别为68.81 MPa和 7.72 GPa;宽频带夹芯复合材料的弯曲强度和模量分别为145.76 MPa和 9.13 GPa。断面形貌电镜照片显示,夹芯复合材料受到弯曲破坏后有局部小范围层间开裂现象,整体层间结合良好。Abstract: In order to achieve a kind of composite material with both wave absorbing property and certain mechanical load bearing function, the metamaterial absorbers and sandwich composite were combined. By simulation, the metamaterial absorbers satisfying dual-band and broadband electromagnetic wave absorption were designed, and the wave absorbing performances were characterized. The aforementioned metamaterial absorbers were then integrated into the sandwich composite, in which the glass fiber/epoxy composite was used as the top layer, the PMI foam was used as the core layer, and the carbon fiber/epoxy composite was used as the bottom layer. The measured electromagnetic wave absorbing performance of the final sandwich composites shows that the dual-band composite has the absorptivity of 94.13% and 99.99% at the frequency of 8.65 GHz and 10.30 GHz respectively, while the broadband composite has the absorptivity of 90.02%-99.91% at 8.25-11.61 GHz frequency range. The bending test results exhibit that the dual-band composite has the bending strength and modulus of 68.81 MPa and 7.72 GPa, and the broadband composite has the bending strength of 145.76 MPa and modulus of 9.13 GPa. The SEM photos of after-fracture cross sections show that a small area of delamination can be observed and the overall laminates bonding performance is good.
-
图 8 双频带超材料吸波体表面电流分布 (a)8.94 GHz;(b)10.48 GHz(黑色箭头代表表面金属图案电流走向,白色箭头代表金属背板电流走向)
Figure 8. Surface current distribution of dual-band metamaterial absorber at frequency of (a) 8.94 GHz ;(b)10.48 GHz (The black arrow represents current trend of surface metal pattern, and the white arrow represents current trend of metal backplane.)
图 13 宽频带超材料吸波体表面电流分布 (a)9.30 GHz;(b)13.82 GHz(黑色箭头代表表面金属图案电流走向,白色箭头代表金属背板电流走向)
Figure 13. Surface current distribution of broadband metamaterial absorber (a) 9.30 GHz;(b)13.82 GHz (The black arrow represents current trend of surface metal pattern, and the white arrow represents current trend of metal backplane.)
表 1 夹芯复合材料的尺寸
Table 1. Sandwich composite size
Sample h1/mm h2/mm h3/mm h4/mm h5/mm D-composite 0.3 1 0.67 1 0.4 B-composite 0.3 1 3.07 1 0.4 -
[1] 胡豪斌,张翔,廖文和,等. 卫星隐身技术研究进展及发展趋势[J]. 国防科技大学学报,2021,43(3):107-127. doi: 10.11887/j.cn.202103014(HU H B,ZHANG X,LIAO W H,et al. Progress and prospect in satellite stealth technology[J]. Journal of National University of Defense Technology,2021,43(3):107-127. doi: 10.11887/j.cn.202103014 [2] WANG X K,SHI Z W,XU B S,et al. Study of wave-absorbing coating failure by electrochemical measurements[J]. Journal of Materials Engineering and Performance,2019,28(11):7086-7096. doi: 10.1007/s11665-019-04433-0 [3] 郭鸿霞,张家萌,王青敏,等. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程,2020,48(6):43-49. doi: 10.11868/j.issn.1001-4381.2019.000980(GUO H X,ZHANG J M,WANG Q M,et al. Ferromagnetic/ferroelectric composites and microwave properties of its metamaterial structure[J]. Journal of Materials Engineering,2020,48(6):43-49. doi: 10.11868/j.issn.1001-4381.2019.000980 [4] SMITH D R,PENDRY J B,WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science,2004,305(5685):788-792. doi: 10.1126/science.1096796 [5] LANDY N I,SAJUYIGBE S,MOCK J J,et al. Perfect metamaterial absorber[J]. Physical Review Letters,2008,100(20):207402. doi: 10.1103/PhysRevLett.100.207402 [6] LI L,YANG Y,LIANG C H. A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes[J]. Journal of Applied Physics,2011,110(6):063702. doi: 10.1063/1.3638118 [7] SINGH R K,GUPTA A,SHARMA A,et al. An ultra-thin quad-band metamaterial inspired absorber using symmetric bent-arrow shaped resonator for sensing and imaging in defense applications[J]. Materials Research Express,2020,7(11):115801. doi: 10.1088/2053-1591/abc3a3 [8] BARDE C,CHOUBEY A,SINHA R,et al. A compact wideband metamaterial absorber for Ku band applications[J]. Journal of Materials Science:Materials in Electronics,2020,31(19):16898-16906. doi: 10.1007/s10854-020-04245-2 [9] CHEN P,KONG X L,HAN J F,et al. Wide-angle ultra-broadband metamaterial absorber with polarization-insensitive characteristics[J]. Chinese Physics Letters,2021,38(2):139-142. doi: 10.1088/0256-307X/38/2/027801 [10] LU X J,XIAO Z Y,CHEN M M. A broadband metamaterial absorber based on multilayer-stacked structure[J]. Modern Physics Letters B,2020,34(21):2050216. doi: 10.1142/S0217984920502164 [11] ZHANG X W,LIU S B,YU Q M,et al. A miniaturized high-performance broadband absorber based on 2.5-D meander lines and magnetic materials at low frequencies [J]. International Journal of RF and Microwave Computer-Aided Engineering,2021,31(5):e22601. doi: 10.1002/mmce.22601 [12] 于家傲,彭世蕤,刘立国,等. 双六边形环电路模拟吸波材料及其等效电路模型[J]. 国防科技大学学报,2019,41(3):153-158. doi: 10.11887/j.cn.201903023(YU J A,PENG S R,LIU L G,et al. Circuit analog absorber with double hexagonal loops and its equivalent circuit model[J]. Journal of National University of Defense Technology,2019,41(3):153-158. doi: 10.11887/j.cn.201903023 [13] WANG J,DING X X,HUANG X J,et al. Metamaterials absorber for multiple frequency points within 1 GHz[J]. Physica Scripta,2020,95(6):065505. doi: 10.1088/1402-4896/ab7f49 [14] RAMYA S,RAO I S. An ultra-thin, bandwidth enhanced metamaterial absorber for X-band applications[J]. Wireless Personal Communications,2019,105(4):1617-1627. doi: 10.1007/s11277-019-06163-x [15] MOHANTY A,ACHARYA O P,APPASANI B,et al. A broadband polarization insensitive metamaterial absorber using petal-shaped structure[J]. Plasmonics,2020,15(6):2147-2152. doi: 10.1007/s11468-020-01241-4 [16] WANG J F,LANG T T,HONG Z,et al. Design and fabrication of a triple-band terahertz metamaterial absorber [J]. Nanomaterials,2021,11(5):1110. doi: 10.3390/nano11051110 [17] REN Z B,LIN Z H,LI M M,et al. Simple structured broadband metamaterial absorbers with the same topology and structural ratio for selected wavebands[J]. Infrared Physics & Technology,2020,108:103339. doi: 10.1016/j.infrared.2020.103339 [18] ZHANG F N,WANG Q J,DING L. Broadband near-infrared metamaterial absorber based on rainbow trapping effect[J]. Optics Communications,2020,475:126284. doi: 10.1016/j.optcom.2020.126284 [19] 杜宏艳,张子栋,田瑞,等. 基于人工电磁介质的宽带吸波器研究进展[J]. 材料工程,2020,48(6):23-33. doi: 10.11868/j.issn.1001-4381.2019.001015(DU H Y,ZHANG Z D,TIAN R,et al. Research progress in broadband absorber based on artificial electromagnetic medium[J]. Journal of Materials Engineering,2020,48(6):23-33. doi: 10.11868/j.issn.1001-4381.2019.001015 [20] 刘晓明,任志宇,陈陆平,等. 红外隐身超材料[J]. 材料工程,2020,48(6):1-11. doi: 10.11868/j.issn.1001-4381.2019.001019(LIU X M,REN Z Y,CHEN L P,et al. Infrared stealth metamaterials[J]. Journal of Materials Engineering,2020,48(6):1-11. doi: 10.11868/j.issn.1001-4381.2019.001019 [21] 彭华新, 周济, 崔铁军, 等. 中国战略性新兴产业-前沿新材料: 超材料[M]. 北京: 中国铁道出版社, 2020: 59. [22] CHEN X D,GRZEGORCZYK T M,WU B I,et al. Robust method to retrieve the constitutive effective parameters of metamaterials[J]. Physical Review E,2004,70(1):016608. doi: 10.1103/PhysRevE.70.016608 -