含超材料吸波体的夹芯复合材料设计制备及性能

阮心怡 杨家骅 邱夷平 姚澜

阮心怡, 杨家骅, 邱夷平, 姚澜. 含超材料吸波体的夹芯复合材料设计制备及性能[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000182
引用本文: 阮心怡, 杨家骅, 邱夷平, 姚澜. 含超材料吸波体的夹芯复合材料设计制备及性能[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000182
RUAN Xinyi, YANG Jiahua, QIU Yiping, YAO Lan. Design, fabrication and properties of sandwich composites with metamaterial absorbers integrated[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000182
Citation: RUAN Xinyi, YANG Jiahua, QIU Yiping, YAO Lan. Design, fabrication and properties of sandwich composites with metamaterial absorbers integrated[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000182

含超材料吸波体的夹芯复合材料设计制备及性能

doi: 10.11868/j.issn.1005-5053.2021.000182
详细信息
    通讯作者:

    姚澜(1978—),女,博士,副教授,主要从事纺织超材料/复合材料的研究。联系地址:上海市松江区人民北路2999号3号学院楼(201620),E-mail: yaolan@dhu.edu.cn

  • 中图分类号: TB34

Design, fabrication and properties of sandwich composites with metamaterial absorbers integrated

  • 摘要: 为了获得一种兼具吸波性能和一定力学承载性能的复合材料,将超材料吸波体与夹芯复合材料相结合。通过仿真设计出满足双频带、宽频带电磁波吸收的超材料吸波体,对其吸波性能进行表征。而后将双频带、宽频带超材料吸波体分别嵌入以玻璃纤维/环氧树脂复合材料为上面板、聚甲基丙烯酰亚胺(PMI)泡沫为芯层、碳纤维/环氧树脂复合材料为下面板的夹芯复合结构中,形成夹芯复合材料。对最终的夹芯复合材料进行吸波性能测试,结果表明:双频带夹芯复合材料在8.65 GHz和10.30 GHz下的电磁吸波率分别达到94.13%和99.99%,宽频带夹芯复合材料在8.25~11.61 GHz的频段范围内的电磁吸波率为90.02%~99.91%。弯曲性能测试结果显示:双频带夹芯复合材料的弯曲强度和模量分别为68.81 MPa和 7.72 GPa;宽频带夹芯复合材料的弯曲强度和模量分别为145.76 MPa和 9.13 GPa。断面形貌电镜照片显示:夹芯复合材料受到弯曲破坏后有局部小范围层间开裂现象,整体层间结合良好。

     

  • 图  1  双频带超材料的单元结构 (a)立体图;(b)平面图

    Figure  1.  Unit cell of dual-band metamaterial  (a)three-dimensional view ;(b) plan view

    图  2  宽频带超材料的单元结构 (a)立体图;(b)平面图

    Figure  2.  Unit cell of broadband metamaterial  (a) three-dimensional view ;(b)plan view

    图  3  夹芯复合材料结构

    Figure  3.  Designed structure of sandwich composite

    图  4  超材料吸波体局部实物图  (a)双频带;(b)宽频带

    Figure  4.  Partial schematic diagram of metamaterial absorbers (a) dual-band ;(b)broadband

    图  5  双频带超材料吸波体 (a)仿真归一化阻抗;(b)仿真与实测吸收率对比

    Figure  5.  Dual-band metamaterial absorber  (a)simulated normalized impedance;(b)comparison of simulated and measured absorptivity

    图  6  双频带超材料吸波体表面电场分布 (a)8.94 GHz;(b)10.48 GHz

    Figure  6.  Surface electric field distribution of dual-band metamaterial absorber at frequency of (a)8.94 GHz;(b)10.48 GHz

    图  7  双频带超材料吸波体顶层金属和中间介质层间的电场分布 (a)8.94 GHz;(b)10.48 GHz

    Figure  7.  Electric field distribution between the top metal and the intermediate dielectric layer of dual-band metamaterial absorber at frequency of (a) 8.94 GHz ;(b)10.48 GHz

    图  8  双频带超材料吸波体表面电流分布 (a)8.94 GHz;(b)10.48 GHz(注:黑色箭头代表表面金属图案电流走向,白色箭头代表金属背板电流走向)

    Figure  8.  Surface current distribution of dual-band metamaterial absorber at frequency of (a) 8.94 GHz ;(b)10.48 GHz (Note: The black arrow represents current trend of surface metal pattern, and the white arrow represents current trend of metal backplane.)

    图  9  D-composite吸收率结果(仿真、实测与空白对照组)

    Figure  9.  D-composite absorptivity results (simulated,measured and control group)

    图  10  宽频带超材料吸波体 (a)仿真归一化阻抗;(b)仿真与实测吸收率

    Figure  10.  Broadband metamaterial absorber  (a)simulated normalized impedance;(b)comparison of simulated and measured absorptivity

    图  11  宽频带超材料吸波体表面电场分布 (a)9.30 GHz;(b)13.82 GHz

    Figure  11.  Surface electric field distribution of broadband metamaterial absorber at frequency of (a) 9.30 GHz;(b) 13.82 GHz

    图  12  宽频带超材料吸波体顶层金属和中间介质层间的电场分布 (a)9.30 GHz;(b)13.82 GHz

    Figure  12.  Electric field distribution between the top metal and the intermediate dielectric layer of broadband metamaterial absorber at frequency of (a) 9.30 GHz ;(b) 13.82 GHz

    图  13  宽频带超材料吸波体表面电流分布 (a)9.30 GHz;(b)13.82 GHz(注:黑色箭头代表表面金属图案电流走向,白色箭头代表金属背板电流走向)

    Figure  13.  Surface current distribution of broadband metamaterial absorber at frequency of (a) 9.30 GHz;(b)13.82 GHz (Note: The black arrow represents current trend of surface metal pattern, and the white arrow represents current trend of metal backplane.)

    图  14  B-composite吸收率结果(仿真、实测与空白对照组)

    Figure  14.  B-composite absorptivity results (simulated,measured and control group)

    图  15  D-composite和B-composite弯曲性能 (a)弯曲强度;(b)弯曲模量(注:柱状图中a,b表示显著水平α=0.05)

    Figure  15.  Bending properties of D-composite and B-composite (a)bending strength ;(b) bending modulus (note:a and b in the histogram indicate the significant level α=0.05)

    图  16  弯曲断裂截面电镜图 (a)、(c)双频带;(b)、(d)宽频带

    Figure  16.  SEM photos of bending fracture sections (a),(c)dual-band ;(b),(d) broadband

    表  1  夹芯复合材料的尺寸

    Table  1.   Sandwich composite size

    Sampleh1/mmh2/mmh3/mmh4/mmh5/mm
    D-composite0.310.6710.4
    B-composite0.313.0710.4
    下载: 导出CSV
  • [1] 胡豪斌,张翔,廖文和,等. 卫星隐身技术研究进展及发展趋势[J]. 国防科技大学学报,2021,43(3):107-27. doi: 10.11887/j.cn.202103014

    (HU H B,ZHANG X,LIAO W H,et al. Progress and prospect in satellite stealth technology[J]. Journal of National University of Defense Technology,2021,43(3):107-27. doi: 10.11887/j.cn.202103014
    [2] WANG X K,SHI Z W,XU B S,et al. Study of wave-absorbing coating failure by electrochemical measurements[J]. Journal of Materials Engineering and Performance,2019,28(11):7086-96. doi: 10.1007/s11665-019-04433-0
    [3] 郭鸿霞,张家萌,王青敏,等. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程,2020,48(6):43-49. doi: 10.11868/j.issn.1001-4381.2019.000980

    (GUO H X,ZHANG J M,WANG Q M,et al. Ferromagnetic/ferroelectric composites and microwave properties of its metamaterial structure[J]. Journal of Materials Engineering,2020,48(6):43-49. doi: 10.11868/j.issn.1001-4381.2019.000980
    [4] SMITH D R,PENDRY J B,WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science,2004,305(5685):788-92. doi: 10.1126/science.1096796
    [5] LANDY N I,SAJUYIGBE S,MOCK J J,et al. Perfect metamaterial absorber[J]. Physical Review Letters,2008,100(20):207402. doi: 10.1103/PhysRevLett.100.207402
    [6] LI L,YANG Y,LIANG C H. A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes[J]. Journal of Applied Physics,2011,110(6):063702. doi: 10.1063/1.3638118
    [7] SINGH R K,GUPTA A,SHARMA A,et al. An ultra-thin quad-band metamaterial inspired absorber using symmetric bent-arrow shaped resonator for sensing and imaging in defense applications[J]. Materials Research Express,2020,7(11):115801. doi: 10.1088/2053-1591/abc3a3
    [8] BARDE C,CHOUBEY A,SINHA R,et al. A compact wideband metamaterial absorber for Ku band applications[J]. Journal of Materials Science:Materials in Electronics,2020,31(19):16898-906. doi: 10.1007/s10854-020-04245-2
    [9] CHEN P,KONG X L,HAN J F,et al. Wide-angle ultra-broadband metamaterial absorber with polarization-insensitive characteristics[J]. Chinese Physics Letters,2021,38(2):139-142. doi: 10.1088/0256-307X/38/2/027801
    [10] LU X J,XIAO Z Y,CHEN M M. A broadband metamaterial absorber based on multilayer-stacked structure[J]. Modern Physics Letters B,2020,34(21):2050216. doi: 10.1142/S0217984920502164
    [11] ZHANG X W,LIU S B,YU Q M,et al. A miniaturized high-performance broadband absorber based on 2.5-D meander lines and magnetic materials at low frequencies[J]. International Journal of Rf and Microwave Computer-Aided Engineering,2021,31(5):e22601. doi: 10.1002/mmce.22601
    [12] 于家傲,彭世蕤,刘立国,等. 双六边形环电路模拟吸波材料及其等效电路模型[J]. 国防科技大学学报,2019,41(3):153-8. doi: 10.11887/j.cn.201903023

    (YU J A,PENG S R,LIU L G,et al. Circuit analog absorber with double hexagonal loops and its equivalent circuit model[J]. Journal of National University of Defense Technology,2019,41(3):153-8. doi: 10.11887/j.cn.201903023
    [13] WANG J,DING X X,HUANG X J,et al. Metamaterials absorber for multiple frequency points within 1 GHz[J]. Physica Scripta,2020,95(6):065505. doi: 10.1088/1402-4896/ab7f49
    [14] RAMYA S,RAO I S. An ultra-thin, bandwidth enhanced metamaterial absorber for X-band applications[J]. Wireless Personal Communications,2019,105(4):1617-27. doi: 10.1007/s11277-019-06163-x
    [15] MOHANTY A,ACHARYA O P,APPASANI B,et al. A broadband polarization insensitive metamaterial absorber using petal-shaped structure[J]. Plasmonics,2020,15(6):2147-52. doi: 10.1007/s11468-020-01241-4
    [16] WANG J F,LANG T T,HONG Z,et al. Design and fabrication of a triple-band terahertz metamaterial absorber[J]. Nanomaterials,2021,11(5):1110. doi: 10.3390/nano11051110
    [17] REN Z B,LIN Z H,LI M M,et al. Simple structured broadband metamaterial absorbers with the same topology and structural ratio for selected wavebands[J]. Infrared Physics & Technology,2020,108:103339. doi: 10.1016/j.infrared.2020.103339
    [18] ZHANG F N,WANG Q J,DING L. Broadband near-infrared metamaterial absorber based on rainbow trapping effect[J]. Optics Communications,2020,475:126284. doi: 10.1016/j.optcom.2020.126284
    [19] 杜宏艳,张子栋,田瑞,等. 基于人工电磁介质的宽带吸波器研究进展[J]. 材料工程,2020,48(6):23-33. doi: 10.11868/j.issn.1001-4381.2019.001015

    (DU H Y,ZHANG Z D,TIAN R,et al. Research progress in broadband absorber based on artificial electromagnetic medium[J]. Journal of Materials Engineering,2020,48(6):23-33. doi: 10.11868/j.issn.1001-4381.2019.001015
    [20] 刘晓明,任志宇,陈陆平,等. 红外隐身超材料[J]. 材料工程,2020,48(6):1-11. doi: 10.11868/j.issn.1001-4381.2019.001019

    (LIU X M,REN Z Y,CHEN L P,et al. Infrared stealth metamaterials[J]. Journal of Materials Engineering,2020,48(6):1-11. doi: 10.11868/j.issn.1001-4381.2019.001019
    [21] 彭华新, 周济, 崔铁军, 等. 中国战略性新兴产业-前沿新材料: 超材料[M]. 北京: 中国铁道出版社, 2020: 59.
    [22] CHEN X D,GRZEGORCZYK T M,WU B I,et al. Robust method to retrieve the constitutive effective parameters of metamaterials[J]. Physical Review E,2004,70(1):016608. doi: 10.1103/PhysRevE.70.016608
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2021-12-07
  • 网络出版日期:  2022-04-22

目录

    /

    返回文章
    返回