Effect of pre-deformation on mechanical and corrosion properties of spray deposited Al-Cu-Li alloy
-
摘要: 采用微观组织观察与力学和晶间性能测试相结合的实验方法,研究预变形处理(预轧制和预拉伸)对Al-Cu-Li合金后续峰值时效态合金的微观组织、力学性能以及腐蚀行为的影响。结果表明:时效前进行预变形处理能够促进合金晶粒内部析出大量均匀细小呈弥散分布的T1相,减少晶界上析出相数量,提升合金综合力学性能;析出相能够平衡合金晶界和晶粒内部的电位差,降低合金的晶间腐蚀敏感性,减小腐蚀速率,增强合金抗晶间腐蚀性能。
-
关键词:
- 预变形 /
- 喷射成形Al-Cu-Li合金 /
- 微观组织 /
- 力学性能 /
- 晶间腐蚀
Abstract: The effects of pre-rolling and pre-stretching deformation on microstructure, mechanical properties and corrosion behavior of Al-Cu-Li alloy in subsequent peak-aging were investigated by means of microstructure observation with mechanical and intergranular properties tests. The test results show that the pre-deformation treatment before aging promotes the precipitation of a large number of uniform and fine T1 phase with dispersed distribution in the alloy grain, and reduces the number of precipitates on the grain boundary, so as to improve the comprehensive mechanical properties of the alloy. In addition, this precipitate microstructure can balance the potential difference between the grain boundary and the grain interior, reduce the intergranular corrosion sensitivity of the alloy, reduce the corrosion rate and enhance the intergranular corrosion resistance of the alloy. -
表 1 Al-Cu-Li合金的标准化学成分(质量分数/%)
Table 1. Standard chemical composition of Al-Cu-Li alloy (mass fraction%)
Cu Li Mg Ag Zr Si Fe Al 4.01 1.13 0.37 0.32 0.12 0.04 0.05 Bal 表 2 Al-Cu-Li合金的时效处理制度
Table 2. Aging treatment system for Al-Cu-Li alloy
Solution
treatmentPre-deformation Aging
temperatureCode 510 °C/1.5 h 0 155 °C AA Pre-rolling –5% RA Pre-stretching –5% SA 表 3 不同时效制度下晶间腐蚀形貌特征及深度
Table 3. Intergranular corrosion morphologies and depths under different aging systems
Treatment code Corrosion mode Mean IGC depth/μm Min IGC depth/μm Max IGC depth/μm AA General IGC+Pitting 136 114 154 RA Local IGC+Pitting 109 88 118 SA Pitting 121 100 140 表 4 三种不同时效制度下T1相相关参数统计
Table 4. T1 phase related parameter statistics with three aging conditions
Treatment code Average diameter of T1 phase /nm Area fraction of T1 phase /% Number density of T1 phase /μm2 AA 171.1 3.67 26.4 RA 37.7 4.63 173.8 SA 38.3 4.61 167.3 表 5 不同时效制度下合金的极化曲线参数
Table 5. Polarization curve parameters of the alloys under different aging systems
Treatment code Ecorr/VSCE I/A·cm–2 AA –0.666 4.17×10–6 RA –0.626 1.79×10–6 SA –0.643 2.51×10–6 -
[1] EL-ATY A A,XU Y,GUO X,et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review[J]. Journal of Advanced Research,2018,10:49-67. doi: 10.1016/j.jare.2017.12.004 [2] 徐进军,康唯,都昌兵. 航空航天铝锂合金及其成形技术的研究现状和发展趋势[J]. 兵器材料科学与工程,2017,40(3):132-137.XU J J,KANG W,DOU C B. Present condition and development trends of Al-Li alloys used for aeronautic and astronautic industry[J]. Ordnance Material Science and Engineering,2017,40(3):132-137. [3] WANG Y,ZHAO G,XIAO X,et al. Microstructures and mechanical properties of spray deposited 2195 Al-Cu-Li alloy through thermo-mechanical processing[J]. Materials Science & Engineering:A,2018,727:78-89. [4] 顾晓栋. 热处理对喷射成形2195铝锂合金组织与性能的影响[D]. 南京: 江苏大学, 2020.GU X D. The effect of heat treatment on microstructure and properties of spray forming 2195 Al-Li alloy[D]. Nanjing: Jiangsu University, 2020. [5] XU X,ZHAO G Q,WANG Y X,et al. Microstructural evolution and its effect on mechanical properties of spray deposited 2195 alloy during porthole die extrusion process[J]. Vacuum,2019,167:28-39. doi: 10.1016/j.vacuum.2019.05.032 [6] STARKE E. Historical development and present status of aluminum-lithium alloys[M]∥PRASAD E, GOKHALE A, WANHILL H. Aluminum-lithium alloys processing, properties, and applications. Butterworth-Heinemann: Elsevier Inc, 2014: 3-26. [7] RODGERS B I,PRANGNELL P B. Quantification of the influence of increased pre-stretching on microstructure-strength relationship in the Al-Cu-Li alloy AA2195[J]. Acta Materialia,2016,108:55-67. doi: 10.1016/j.actamat.2016.02.017 [8] LI H Y,HUANG D SH,KANG W,et al. Effect of different aging processes on the microstructure and mechanical properties of a novel Al–Cu–Li alloy[J]. Journal of Materials Science & Technology,2016,32:1049-1053. [9] LI J F,YE ZH H,LIU D Y,et al. Influence of pre-deformation on aging precipitation behavior of three Al-Cu-Li alloys[J]. Acta Metallurgica Sinica (English Letters),2017,30(2):133-145. doi: 10.1007/s40195-016-0519-6 [10] LI F,LIU ZH Y,LIU M,et al. Analysis of empirical relation between microstructure, texture evolution and fatigue properties of an Al-Cu-Li alloy during different pre-deformation processes[J]. Materials Science and Engineering:A,2018,726:309-319. doi: 10.1016/j.msea.2018.04.047 [11] YOSHIMURA R,J KONNO T. Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: the θ′ and T1 phases[J]. Acta Materialia,2003,51(14):4251-4266. doi: 10.1016/S1359-6454(03)00253-2 [12] CHEN ANTAO,PENG Y,ZHANG L,et al. Microstructural evolution and mechanical properties of cast Al-3Li-1.5Cu-0.2Zr alloy during heat treatment[J]. Materials Characterization,2016,114:234-242. doi: 10.1016/j.matchar.2016.03.007 [13] DECREUS B,DESCHAMPS A,GEUSER DE F,et al. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys[J]. Acta Materialia,2013,61:2207-2218. doi: 10.1016/j.actamat.2012.12.041 [14] DORIN T,GEUSER DE F,W LEFEBVRE,et al. Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al-Cu-Li alloy[J]. Materials Science and Engineering:A,2014,605:119-126. doi: 10.1016/j.msea.2014.03.024 [15] PROTON V,ALEXISl J,ANDRIEU E,et al. The influence of artificial aging on the corrosion behavior of a 2050 aluminum-copper-lithium alloy[J]. Corrosion Science,2014,80:494-502. doi: 10.1016/j.corsci.2013.11.060 [16] HUANG J L,LI J F,LIU D Y. Correlation of intergranular corrosion behavior with microstructure in Al-Cu-Li alloy[J]. Corrosion Science,2018,139:215-226. doi: 10.1016/j.corsci.2018.05.011 [17] BRAIN J C,JOHN R S. Corrosion cracking susceptibility in Al-Li-Cu alloys 2090 and 2096 as a function of isothermal aging time[J]. Scripta Materialia,2000,42:1039-1045. doi: 10.1016/S1359-6462(00)00333-X [18] PROTON V,ALEXIS J,ANDRIEU E. Characterization and understanding of the corrosion behavior of the nugget in a 2050 aluminum alloy friction stir welding joint[J]. Corrosion Science,2013,73:130-142. doi: 10.1016/j.corsci.2013.04.001 [19] MA Y L,LI J F SANG F J,et al. Grain structure and tensile property of Al-Li alloy sheet caused by different cold rolling reduction[J]. Transactions of Nonferrous Metals Society of China,2019,29(8):1569-1582. doi: 10.1016/S1003-6326(19)65064-8 -