预变形对喷射成形Al-Cu-Li合金力学和腐蚀性能的影响

都昌兵 肖锎 官瑞春 彭静 唐启东 徐进军

都昌兵, 肖锎, 官瑞春, 彭静, 唐启东, 徐进军. 预变形对喷射成形Al-Cu-Li合金力学和腐蚀性能的影响[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000191
引用本文: 都昌兵, 肖锎, 官瑞春, 彭静, 唐启东, 徐进军. 预变形对喷射成形Al-Cu-Li合金力学和腐蚀性能的影响[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000191
DU Changbin, XIAO Kai, GUAN Ruichun, PENG Jing, TANG Qidong, XU Jinjun. Effect of pre-deformation on mechanical and corrosion properties of spray deposited Al-Cu-Li alloy[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000191
Citation: DU Changbin, XIAO Kai, GUAN Ruichun, PENG Jing, TANG Qidong, XU Jinjun. Effect of pre-deformation on mechanical and corrosion properties of spray deposited Al-Cu-Li alloy[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000191

预变形对喷射成形Al-Cu-Li合金力学和腐蚀性能的影响

doi: 10.11868/j.issn.1005-5053.2021.000191
基金项目: 湖南省自然科学基金科教联合项目(2020JJ7077)
详细信息
    通讯作者:

    徐进军(1986—),男,硕士,研究方向为铝合金材料设计与检测。E-mail:xujinjun1986@sohu.com

  • 中图分类号: TG146

Effect of pre-deformation on mechanical and corrosion properties of spray deposited Al-Cu-Li alloy

  • 摘要: 采用微观组织观察与力学和晶间性能测试相结合的实验方法,研究预变形处理(预轧制和预拉伸)对Al-Cu-Li合金后续峰值时效态合金的微观组织、力学性能以及腐蚀行为的影响。结果表明:时效前进行预变形处理能够促进合金晶粒内部析出大量均匀细小呈弥散分布的T1相,减少晶界上析出相数量,提升合金综合力学性能;析出相能够平衡合金晶界和晶粒内部的电位差,降低合金的晶间腐蚀敏感性,减小腐蚀速率,增强合金抗晶间腐蚀性能。

     

  • 图  1  标准拉伸试样尺寸示意图

    Figure  1.  Schematic diagram of standard tensile specimen

    图  2  AA、RA、SA三种时效制度下的时效硬化曲线

    Figure  2.  Age hardening curves under three ageing systems of AA, RA and SA

    图  3  AA、RA、SA三种时效制度下力学性能测试结果 (a)应力-应变曲线; (b)抗拉强度、屈服强度、伸长率的比较

    Figure  3.  Mechanical properties of AA, RA and SA under three ageing systems  (a) stress-strain curve, (b) comparison of tensile strength, yield strength and elongation of three aging systems

    图  4  室温拉伸实验后试样的断口形貌 (a)AA; (b)RA; (c)SA

    Figure  4.  Fracture morphologies of the samples after room temperature tensile tests  (a) AA, (b) RA, (c) SA

    图  5  试样在IGC溶液中浸泡6 h后的典型截面形貌和腐蚀深度统计 (a)AA; (b)RA; (c)SA; (d) 腐蚀深度统计

    Figure  5.  Cross sections of peak-aged samples undertaken different aging treatments after immersed in ICG solution for 6 h (a) AA; (b) RA; (c) SA; (d) corrosion depth statistics

    图  6  HAADF-STEM图像及其对应[110]Al方向的SAED (a) [110]Al方向的SADE衍射斑点示意图; (b)AA; (c) RA; (d) SA

    Figure  6.  HAADF-STEM images taken along [110]Al direction and the corresponding SAED patterns  (a) schematic diagrams of SADE diffraction spots in [110]Al direction, (b) AA, (c)RA, (d) SA

    图  7  不同时效制度下Al-Cu-Li合金的屈服强度组成分布

    Figure  7.  Main component distribution of yield strength of Al-Cu-Li alloy under different aging systems

    图  8  不同时效制度下试样的晶界HAADF-STEM图像  (a)AA; (b) RA; (c) SA

    Figure  8.  HAADF-STEM images of grain boundaries of samples under different aging systems  (a) AA, (b)RA,(c) SA

    图  9  不同时效制度下合金的电化学极化曲线

    Figure  9.  Electrochemical polarization curves of the alloys under different aging systems

    表  1  Al-Cu-Li合金的标准化学成分(质量分数/%)

    Table  1.   Standard chemical composition of Al-Cu-Li alloy (mass fraction%)

    CuLiMgAgZrSiFeAl
    4.011.130.370.320.120.040.05Bal
    下载: 导出CSV

    表  2  Al-Cu-Li合金的时效处理制度

    Table  2.   Aging treatment system for Al-Cu-Li alloy

    Solution
    treatment
    Pre-deformationAging
    temperature
    Code
    510 °C/1.5 h0155 °CAA
    Pre-rolling –5%RA
    Pre-stretching –5%SA
    下载: 导出CSV

    表  3  不同时效制度下晶间腐蚀形貌特征及深度

    Table  3.   Intergranular corrosion morphologies and depths under different aging systems

    Treatment codeCorrosion modeMean IGC depth/μmMin IGC depth/μmMax IGC depth/μm
    AAGeneral IGC+Pitting136114154
    RALocal IGC+Pitting10988118
    SAPitting121100140
    下载: 导出CSV

    表  4  三种不同时效制度下T1相相关参数统计

    Table  4.   T1 phase related parameter statistics with three aging conditions

    Treatment codeAverage diameter of T1 phase /nmArea fraction of T1 phase /%Number density of T1 phase /μm2
    AA171.13.6726.4
    RA37.74.63173.8
    SA38.34.61167.3
    下载: 导出CSV

    表  5  不同时效制度下合金的极化曲线参数

    Table  5.   Polarization curve parameters of the alloys under different aging systems

    Treatment codeEcorr/VSCEI/A·cm–2
    AA–0.6664.17×10–6
    RA–0.6261.79×10–6
    SA–0.6432.51×10–6
    下载: 导出CSV
  • [1] EL-ATY A A,XU Y,GUO X,et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review[J]. Journal of Advanced Research,2018,10:49-67. doi: 10.1016/j.jare.2017.12.004
    [2] 徐进军,康唯,都昌兵. 航空航天铝锂合金及其成形技术的研究现状和发展趋势[J]. 兵器材料科学与工程,2017,40(3):132-137.

    XU J J,KANG W,DOU C B. Present condition and development trends of Al-Li alloys used for aeronautic and astronautic industry[J]. Ordnance Material Science and Engineering,2017,40(3):132-137.
    [3] WANG Y,ZHAO G,XIAO X,et al. Microstructures and mechanical properties of spray deposited 2195 Al-Cu-Li alloy through thermo-mechanical processing[J]. Materials Science & Engineering:A,2018,727:78-89.
    [4] 顾晓栋. 热处理对喷射成形2195铝锂合金组织与性能的影响[D]. 南京: 江苏大学, 2020.

    GU X D. The effect of heat treatment on microstructure and properties of spray forming 2195 Al-Li alloy[D]. Nanjing: Jiangsu University, 2020.
    [5] XU X,ZHAO G Q,WANG Y X,et al. Microstructural evolution and its effect on mechanical properties of spray deposited 2195 alloy during porthole die extrusion process[J]. Vacuum,2019,167:28-39. doi: 10.1016/j.vacuum.2019.05.032
    [6] STARKE E. Historical development and present status of aluminum-lithium alloys[M]∥PRASAD E, GOKHALE A, WANHILL H. Aluminum-lithium alloys processing, properties, and applications. Butterworth-Heinemann: Elsevier Inc, 2014: 3-26.
    [7] RODGERS B I,PRANGNELL P B. Quantification of the influence of increased pre-stretching on microstructure-strength relationship in the Al-Cu-Li alloy AA2195[J]. Acta Materialia,2016,108:55-67. doi: 10.1016/j.actamat.2016.02.017
    [8] LI H Y,HUANG D SH,KANG W,et al. Effect of different aging processes on the microstructure and mechanical properties of a novel Al–Cu–Li alloy[J]. Journal of Materials Science & Technology,2016,32:1049-1053.
    [9] LI J F,YE ZH H,LIU D Y,et al. Influence of pre-deformation on aging precipitation behavior of three Al-Cu-Li alloys[J]. Acta Metallurgica Sinica (English Letters),2017,30(2):133-145. doi: 10.1007/s40195-016-0519-6
    [10] LI F,LIU ZH Y,LIU M,et al. Analysis of empirical relation between microstructure, texture evolution and fatigue properties of an Al-Cu-Li alloy during different pre-deformation processes[J]. Materials Science and Engineering:A,2018,726:309-319. doi: 10.1016/j.msea.2018.04.047
    [11] YOSHIMURA R,J KONNO T. Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: the θ′ and T1 phases[J]. Acta Materialia,2003,51(14):4251-4266. doi: 10.1016/S1359-6454(03)00253-2
    [12] CHEN ANTAO,PENG Y,ZHANG L,et al. Microstructural evolution and mechanical properties of cast Al-3Li-1.5Cu-0.2Zr alloy during heat treatment[J]. Materials Characterization,2016,114:234-242. doi: 10.1016/j.matchar.2016.03.007
    [13] DECREUS B,DESCHAMPS A,GEUSER DE F,et al. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys[J]. Acta Materialia,2013,61:2207-2218. doi: 10.1016/j.actamat.2012.12.041
    [14] DORIN T,GEUSER DE F,W LEFEBVRE,et al. Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al-Cu-Li alloy[J]. Materials Science and Engineering:A,2014,605:119-126. doi: 10.1016/j.msea.2014.03.024
    [15] PROTON V,ALEXISl J,ANDRIEU E,et al. The influence of artificial aging on the corrosion behavior of a 2050 aluminum-copper-lithium alloy[J]. Corrosion Science,2014,80:494-502. doi: 10.1016/j.corsci.2013.11.060
    [16] HUANG J L,LI J F,LIU D Y. Correlation of intergranular corrosion behavior with microstructure in Al-Cu-Li alloy[J]. Corrosion Science,2018,139:215-226. doi: 10.1016/j.corsci.2018.05.011
    [17] BRAIN J C,JOHN R S. Corrosion cracking susceptibility in Al-Li-Cu alloys 2090 and 2096 as a function of isothermal aging time[J]. Scripta Materialia,2000,42:1039-1045. doi: 10.1016/S1359-6462(00)00333-X
    [18] PROTON V,ALEXIS J,ANDRIEU E. Characterization and understanding of the corrosion behavior of the nugget in a 2050 aluminum alloy friction stir welding joint[J]. Corrosion Science,2013,73:130-142. doi: 10.1016/j.corsci.2013.04.001
    [19] MA Y L,LI J F SANG F J,et al. Grain structure and tensile property of Al-Li alloy sheet caused by different cold rolling reduction[J]. Transactions of Nonferrous Metals Society of China,2019,29(8):1569-1582. doi: 10.1016/S1003-6326(19)65064-8
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2021-12-31
  • 网络出版日期:  2022-04-22

目录

    /

    返回文章
    返回