Coupling effect of high and low temperature cycle-humidity-load on tensile properties of carbon fiber/epoxy composites
-
摘要: 研究环氧树脂基碳纤维增强复合材料(EP-CFRP)在荷载及恶劣环境共同作用下的耐久性能。环境因素为 −40~40 ℃ / −40~25 ℃ 2种区间的高低温循环以及湿度(有水浸泡及无水)的影响,荷载为极限荷载的30%和60%。结果表明:“高低温循环-湿度”双因素耦合作用后及“高低温循环-湿度-荷载”三因素耦合作用对EP-CFRP的耐久性影响较大,拉伸强度随高低温循环周期的增加整体呈现先降低再升高再降低的变化趋势,但是峰谷值出现的时间周期相差较大;湿度和荷载水平对EP-CFRP的拉伸模量影响较小;树脂基体与纤维界面产生的微裂纹被证明是导致复合材料后期强度降低的主要原因;湿度-荷载的耦合作用促进裂纹的扩展,加剧了EP-CFRP的损伤。根据损伤分析,采用非线性拟合的方法给出了“高低温循环-湿度-荷载”三因素耦合作用后EP-CFRP的剩余强度损伤模型。Abstract: This paper studies the durability of epoxy resin-based-carbon fiber reinforced polymer (EP-CFRP) under the combined action of aggressive environmental conditions and load. Environmental conditions such as high and low temperature cycles of −40-40 ℃ / −40-25 ℃ and humidity (water immersion and no water) are investigated in an unstressed state or loaded in about 30% or 60% of the initial ultimate load. The results indicate that both of the dual-factor coupling of “high and low temperature cycle-humidity” and the three-factor coupling of “high and low temperature cycle-humidity-load” have a greater impact on the durability of EP-CFRP. The tensile strength varies with the cycle of high and low temperature. The overall increase shows a simulated trend of first decreasing, then increasing, and then decreasing; however, the appearance of the peak and valley values are quite different. Humidity and load level have little effect on the tensile modulus of EP-CFRP The microcracks generated at the interface between the resin matrix and the fiber have been proved to be the main reason for the strength reduction at later stage. The coupling effect of humidity and load promotes the expansion of cracks and exacerbates the damage to EP-CFRP. According to the damage analysis, a non-linear fitting method is used to give the residual strength damage model of EP-CFRP after the coupling action of the three factors “high and low temperature cycle-humidity-load”.
-
Key words:
- CFRP /
- high and low temperature cycle /
- humidity /
- tensile properties /
- residual strength model
-
表 1 T700SC-12K碳纤维丝的性能指标
Table 1. Performance index of T700SC-12K carbon fiber yarn
Material Tensile
strength / MPaTensile
modulus / GPaFracture
elongation / %Density /
(g•cm−3)T700SC-12K 4900 230 2.1 1.8 表 2 FRD-YG-04环氧树脂预浸料的性能指标
Table 2. Performance index of FRD-YG-04 epoxy resin prepreg
Material Glass transition
temperature / ℃Tensile
strength / MPaFRD-YG-04 120-130 78 表 3 软件拟合系数
Table 3. Software fit factor
Working condition Cycles H c d Correlation coefficient −40-40 ℃ Soak 5 0.3376 −0.0238 −0.2448 1 10 0.1715 0.0910 −0.1241 1 100 0.5267 0.1564 −2.1078 1 200 0.0808 0.1927 0.2807 1 300 0.3841 0.008 −0.0082 1 Anhydrous 5 0.3508 0.0171 −0.0351 1 10 0.0884 0.5503 −1.51×10-7 0.99 100 9.91717 0.234 −0.2949 1 200 3.0219 −3.2464 0.8304 0.99 300 0.4581 0.0123 −0.0128 1 −40-25 ℃ Soak 5 0.2816 0.0954 −0.0868 1 10 0.2107 0.1088 −0.1035 0.99 100 −0.4984 0.4784 −0.6000 1 200 0.6088 −0.0405 0.01327 1 300 0.3111 0.04958 −0.0756 1 Anhydrous 5 0.4600 −0.1022 0.0014 0.99 10 0.3402 −0.0454 0.02637 1 100 −0.4984 0.8440 −0.6000 0.97 200 0.6133 -0.0502 0.0001 0.99 300 0.3878 −0.05806 0.0542 1 表 4 应力影响系数
Table 4. Stress influence coefficient
Working condition High and low temperature circulation
influence coefficientStress influence factor Correlation coefficient a b c d −40~40 ℃ Soak −0.0270 2.2153 0.0849 −0.0193 0.93 Anhydrous −0.0778 0.3540 −0.4865 0.0975 1 −40~25 ℃ Soak 0.2819 0.7100 0.1383 −0.1705 0.92 Anhydrous 0.3159 0.7160 0.1176 −0.1036 0.89 表 5 损伤模型
Table 5. Damage model
Working condition Damage model −40~40 ℃ Soak $R(n) = {\sigma _{\text{0} } } - 0.23{\sigma _{\text{0} } }{{\rm{e}}^{\frac{0.0849}{- 0.0193 + s} } } ( - 0.0270)\tan (2.2153n)$ Anhydrous $R(n) = {\sigma _{\text{0} } } - 0.23{\sigma _{\text{0} } }{{\rm{e}}^{\frac{ { - 0.4865} }{ {0.0975 + s} } } }( - 0.0778)\tan (0.3540n)$ −40~25 ℃ Soak $R(n)={\sigma }_{\text{0} }-0.23{\sigma }_{\text{0} }{{\rm{e}}}^{\frac{0.1383}{ -0.1705+s} }0.7100\mathrm{tan}(0.2819n)$ Anhydrous $R(n) = {\sigma _{\text{0} } } - 0.23{\sigma _{\text{0} } }{{\rm{e}}^{\frac{0.1176}{- 0.1036+ s} } }0.3159\tan (0.7160n)$ -
[1] GOGOI R,MAURYA A K,MANIK G. A review on recent development in carbon fiber reinforced polyolefin composites[J]. Composites Part C,2022,8:100279. doi: 10.1016/j.jcomc.2022.100279 [2] 李洋洋. 空气热循环对T700/HT280复合材料力学性能的影响[D]. 沈阳: 沈阳航空航天大学, 2018, 23-24.LI Y Y. The effect of air thermal cycle on mechanical properties of T700/HT280 composites[D]. Shenyang: Shenyang Aerospace University , 2018, 23-24. [3] 刘佳琦. 环境因素对T700/HT280复合材料力学性能的影响[D]. 沈阳: 沈阳航空航天大学, 2017, 47-48.LIU J Q. The effects of environmental ageing on mechanical properties of T700/HT280 composites[D]. Shenyang: Shenyang Aerospace University , 2017, 47-48. [4] MENG J X,WANG Y,YANG H Y,et al. Mechanical properties and internal microdefects evolution of carbon fiber reinforced polymer composites: Cryogenic temperature and thermocycling effects[J]. Composites Science and Technology,2020,191:108083. doi: 10.1016/j.compscitech.2020.108083 [5] LORD H W,DUTTA P K. On the design of polymeric composite structures for cold regions applications[J]. Journal of Reinforced Plastics and Composites,1989,20(3):292. [6] DE PARSCAU DU PLESSIX B,JACQUEMIN F,LEFEBURE P,et al. Characterization and modeling of the polymerization-dependent moisture absorption behavior of an epoxy-carbon fiber-reinforced composite material[J]. Journal of Composite Materials,2016,50(18):2495-2505. doi: 10.1177/0021998315606510 [7] YALAGACH M,FUCHS P F,ANTRETTER T,et al. Thermal and moisture dependent material characterization and modeling of glass fiber reinforced epoxy laminates[J]. Sensors & Transducers,2021,248(1):1-9. [8] 熊明洋. 湿热环境对碳纤维树脂基层合板的力学性能影响研究[D]. 杭州: 浙江理工大学, 2016, 20-21.XIONG M Y. Study of the hygrothermal environment on mechanical properties of carbon fiber rein based laminates[D]. Hangzhou: Zhejiang Sci-Tech University, 2016, 20-21. [9] 于爱民,李趁趁,高丹盈,等. 恶劣环境下纤维增强聚合物片材拉伸性能[J]. 复合材料学报,2017,34(7):1496-1504. doi: 10.13801/j.cnki.fhclxb.20161024.003YU A M,LI C C,GAO D Y,et al. Tensile properties of fiber reinforced polymer sheet exposed to severe environment[J]. Acta Materiae Compositae Sinica,2017,34(7):1496-1504. doi: 10.13801/j.cnki.fhclxb.20161024.003 [10] LI H,XIAN G J,LIN Q,et al. Freeze-thaw resistance of unidirectional-fiber-reinforced epoxy composites[J]. Journal of Applied Polymer Science,2012,123(6):3781-3788. doi: 10.1002/app.34870 [11] 南田田,赵亮,孟玲宇,等. 湿-热-载荷共同作用下碳纤维增强环氧树脂基复合材料老化性能研究[J]. 纤维复合材料,2020,37(1):21-27. doi: 10.3969/j.issn.1003-6423.2020.01.005NAN T T,ZHAO L,MENG L Y,et al. Study on the aging performances of carbon fiber reinforced plastic composite under hygrothermal environment and loading[J]. Fiber Composites,2020,37(1):21-27. doi: 10.3969/j.issn.1003-6423.2020.01.005 [12] 姜明.温湿场交变环境下外加载荷对CFRP结构与力学性能影响[D]. 哈尔滨: 哈尔滨工业大学. 2017, 63-64.JIANG M, Effect of external load on the structure and mechanical properties of CFRP under alternating temperature and humidity field[D]. Harbin: Harbin Institute of Technology, 2017, 63-64. [13] 中国国家标准化管理委员会.GB/T 3354—2014 定向纤维增强聚合物基复合材料拉伸性能试验方法[S]. 北京: 中国标准出版社, 2014. [14] 中国国家标准化管理委员会.GB/T 1462—2005 纤维增强塑料吸水性试验方法[S]. 北京: 中国标准出版社, 2005. [15] 中国航空工业总公司标准委员会.HB 7401—1996 树脂基复合材料层合板湿热环境吸湿试验方法[S]. [S.L.]: [s.n.], 1996. [16] 范金娟,刘杰,隋晓燕. 复合材料单向板的拉伸失效[J]. 失效分析与预防,2015,10(3):139-143. doi: 10.3969/j.issn.1673-6214.2015.03.002FAN J J,LIU J,SUI X Y. Tensile failure of unidirectional composite laminates[J]. Failure Analysis and Prevention,2015,10(3):139-143. doi: 10.3969/j.issn.1673-6214.2015.03.002 [17] KHALILI S. M R, NAJAFI M, ESLAMI-FARSANI R. Effect of thermal cycling on the tensile behavior of polymer composites reinforced by basalt and carbon fibers[J]. Mechanics of Composite Materials,2017,52(6):807-816. doi: 10.1007/s11029-017-9632-5 [18] 陈永务,张庆利,高禹,等. 真空热循环对T700/5224复合材料力学性能的影响[J]. 复合材料科学与工程,2012(3):31-37. doi: 10.3969/j.issn.1003-0999.2012.03.007CHEN Y W,ZHANG Q L,GAO Y,et al. Effect of vacuum thermal cycling on mechanical properties of T700/5224 composites[J]. Composites Science and Engineering,2012(3):31-37. doi: 10.3969/j.issn.1003-0999.2012.03.007 [19] 罗健,石建军,贾彬,等. 低温暴露对碳纤维/环氧树脂复合材料拉伸力学性能的影响[J]. 复合材料学报,2012,37(12):3091-3101. doi: 10.13801/j.cnki.fhclxb.20200629.001LUO J,SHI J J,JIA B,et al. Effect of low temperature exposure on the tensile mechanical properties of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2012,37(12):3091-3101. doi: 10.13801/j.cnki.fhclxb.20200629.001 [20] WAN Y Z,WANG Y L,LUO H L,et al. Moisture absorption behavior of C3D/EP composite and effect of external stress[J]. Materials Science Engineering:A,2002,326(2):324-329. doi: 10.1016/S0921-5093(01)01501-5 [21] 任慧韬,李杉,黄承逵. 冻融循环和荷载耦合作用下CFRP(碳纤维增强聚合物)片材的耐久性试验研究[J]. 工程力学,2010,27(4):202-207.REN H T,LI S,HUANG C K,et al. Study on durability of CFRP subjected to freeze-thaw cycle combined with sustained load[J]. Engineering Mechanics,2010,27(4):202-207. [22] 叶宏军, 詹美珍. T300/4211复合材料的使用寿命评估[J]. 材料工程, 1995 (10): 3-5.YE H J, ZHAN M Z, In-service durability prediction of T300/4211 composites[J]. Journal of Materials Engineering, 1995 (10): 3-5. [23] YAO W X,HIMMEL N. A new cumulative fatigue damage model for fibre-reinforced plastics[J]. Composites Science and Technology,2000,60(1):59-64. doi: 10.1016/S0266-3538(99)00100-1 -