 引用本文: 陶裕梅, 郑子君, 邵家儒. 纤维增强复材C形圆台壳件固化变形的预测方法[J]. 航空材料学报. TAO Yumei, ZHENG Zijun, SHAO Jiaru. Prediction method for curing deformation of conical C-shaped shell of fiber reinforced composite[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000198
 Citation: TAO Yumei, ZHENG Zijun, SHAO Jiaru. Prediction method for curing deformation of conical C-shaped shell of fiber reinforced composite[J]. Journal of Aeronautical Materials. • 中图分类号: TB332

## Prediction method for curing deformation of conical C-shaped shell of fiber reinforced composite

• 摘要: 采用热压罐固化成形的纤维增强复合材料工件在脱模后通常与模具形状有一定出入，影响成型的精度和质量。为研究曲面零件固化变形规律，将C形圆台壳件的几何形状用母线长度、半高处半径、圆心角、半顶角、厚度五个参数表征，并基于虚功原理和小变形假设推导由于固化工艺中温度改变导致的形状变化公式。结果表明：固化后此类工件的厚度变薄，半高处半径缩小、圆心角增大、母线变短、顶角变小。与有限元模拟正交实验对比，验证了本公式的正确性；给出了基于path-dependent本构关系的固化变形有限元模拟的简化实现方案，与文献相比可以减少80%的计算时间，且实现难度较低。分别用本公式、热弹性有限元模型、path-dependent有限元模型计算某小型固定翼飞机的机头罩固化变形，预测半跨长平均缩小量分别是8.1 mm、7.6 mm、6.1 mm，均与实测值7.7 mm基本吻合；计算结果可以解释该零件的装配变形现象。

• 图  1  固化温度工艺曲线以及固化参数随时间的变化

Figure  1.  Curing temperature process curves and changes of curing parameters over time

图  2  两种C形构件模型示意图　（a）圆壳模型；（b）圆台壳模型

Figure  2.  Schematic diagrams of two C-shaped component models 　(a) round shell model； (b) round pedestal shell model

图  3  C形圆台壳的1/2有限元模型

Figure  3.  Symmetrical finite element model of C-shaped circular pedestal shell

图  4  C形圆台壳件几何参数变量的公式预测结果与有限元对比

Figure  4.  Comparison of formula prediction results of geometric parameter variables of C-shaped circular truncated shell and finite element

图  5  path-dependent本构模型示意图

Figure  5.  Schematic diagram of path-dependent constitutive model

图  6  C型构件回弹预测结果与实验、文献对比　（a） （90）n，（n=4,8,12,16） ；（b）（90/0）ns，（n=1,2,3,4）

Figure  6.  Comparison of spring-in prediction results of C-shaped model with experiments and literatures　(a) (90)n, (n=4,8,12,16); (b)(90/0)ns, (n=1,2,3,4)

图  7  某小型固定翼飞机机头罩几何模型

Figure  7.  Geometric model of nose cover of a small fixed-wing aircraft

图  8  机头罩1/2模型固化变形云图及实验测量点

Figure  8.  Curing deformation contour and experimental measurement points of symmetrical model of nose cover

图  9  不同变形轮廓与实验测量结果的对比

Figure  9.  Comparison of different deformation profiles with experimental measurement results

图  10  机头罩1/2模型装配对称轴与侧沿后的变形云图（放大8倍）

Figure  10.  Deformation contour of half of nose cover model after assembling symmetry axis and side edges (8 times magnification)

图  11  某小型固定翼飞机机头罩安装后照片

Figure  11.  Photo of a small fixed-wing aircraft after the installation of the hood

表  1  正交实验变量及对应水平选择

Table  1.   Orthogonal test variables and corresponding level selections

 Level Generatrix length$h/{\text{mm}}$ Radius at half height $r/{\text{mm}}$ Center angle $\theta /\left( {^{\text{o}}} \right)$ Half apex angle$\phi /\left( {^{\text{o}}} \right)$ A B C D 1 100 100 30 5 2 200 200 60 10 3 300 300 90 15

表  2  玻璃纤维增强树脂基复材(Hexcel7781/LY5052/ HY5052,$V_{f}=0.49$ )的等效力学性能

Table  2.   Equivalent mechanical properties of glass fiber reinforced resin-based composite material (Hexcel7781/LY5052/HY5052, $V_{r}=0.49$ )

 State Eτ/GPa En/GPa Gττ/GPa Gτn/GPa νττ ντn ατ10–6/°C αn10–6/°C dβτ/∆Xτ dβn/∆Xn Rubbery 18.7 2.3 0.03 0.03 0.002 0.845 5.54 264.8 –7.95×10–5 –3.5×10–2 Glassy 22.95 8.4 2.55 2.43 0.1 0.455 15.2 66.4 –3.65×10–4 –2.2×10–2

表  3  3 mm厚C形模型的不同本构模型运行时间对比

Table  3.   Comparison of time costs of different constitutive laws for C-section with 3 mm thickness

 Model Time cost/s CHILE(α) 182 CHILE(Tg) 185 Path-dependent 149 Viscoelastic 157 Proposed model 32

表  4  机头罩简化几何模型参数

Table  4.   Simplified geometric model parameters of nose cover

 Radius Generatrix length, h/mm radius at half height, r/mm center angle，θ/(°) half apex angle，φ/(°) Minor radius 782 1315 12 8 Long radius 278.5 80
•  点击查看大图
##### 计量
• 文章访问数:  13
• HTML全文浏览量:  7
• PDF下载量:  1
• 被引次数: 0
##### 出版历程
• 收稿日期:  2021-11-30
• 修回日期:  2022-01-10
• 网络出版日期:  2022-04-22

### 目录 / 下载:  全尺寸图片 幻灯片
• 分享
• 用微信扫码二维码

分享至好友和朋友圈