结构/防热一体化ϕ480 mm复合材料壳体水压实验的声发射特征

惠雪梅 张岗 侯晓 崔红 张承双 包艳玲

惠雪梅, 张岗, 侯晓, 崔红, 张承双, 包艳玲. 结构/防热一体化ϕ480 mm复合材料壳体水压实验的声发射特征[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000201
引用本文: 惠雪梅, 张岗, 侯晓, 崔红, 张承双, 包艳玲. 结构/防热一体化ϕ480 mm复合材料壳体水压实验的声发射特征[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000201
HUI Xuemei, ZHANG Gang, HOU Xiao, CUI Hong, ZHNAG Chengshuang, BAO Yanling. Acoustic emission characteristics of ϕ480 mm composite shell with structure and heat protection integration during water pressure test[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000201
Citation: HUI Xuemei, ZHANG Gang, HOU Xiao, CUI Hong, ZHNAG Chengshuang, BAO Yanling. Acoustic emission characteristics of ϕ480 mm composite shell with structure and heat protection integration during water pressure test[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000201

结构/防热一体化ϕ480 mm复合材料壳体水压实验的声发射特征

doi: 10.11868/j.issn.1005-5053.2021.000201
基金项目: 国家自然科学联合基金资助项目(U1837601)
详细信息
    通讯作者:

    惠雪梅(1975—),女,硕士,高级工程师,研究方向为耐高温树脂配方及其碳纤维复合材料制备技术,联系地址:陕西西安灞桥区洪庆街宇航东路科研三区(710025),E-mail:hxm_xian@163.com

  • 中图分类号: TB553;TH49

Acoustic emission characteristics of ϕ480 mm composite shell with structure and heat protection integration during water pressure test

  • 摘要: 为了满足未来高速高加速战术导弹对壳体承载能力和防热功能的要求,采用干法缠绕工艺制备结构/防热一体化ϕ480 mm复合材料壳体,其中结构层采用T700碳纤维/氰酸酯复合材料,防热层采用复合防热结构,进行壳体内压检验、声发射和水压爆破实验,研究内压作用下壳体的应变变化规律,判断复合材料损伤类型,预测壳体破坏位置,评价外防热材料的结构完整性,考核壳体承受内压载荷的能力。结果表明:结构/防热一体化ϕ480 mm壳体应变与压强呈线性关系,随压强的升高而增大;ϕ480 mm壳体在内压作用下出现树脂开裂、单丝断裂、纤维束断裂和分层等声发射信号,分布在前后封头区域,二次加载后费利西蒂(Felicity)比为0.96;壳体的爆破压强为18.6 MPa,容器特性系数达到42.1 km,后封头区域出现宏观纤维断裂现象;防热层材料表面出现少量纤维起毛、断丝和发白现象,未出现分层和脱落,保持较好的结构完整性。

     

  • 图  1  ϕ480 mm复合材料壳体测试系统

    Figure  1.  Experimental system for ϕ480 mm composite shell

    图  2  ϕ480 mm复合材料壳体应变和传感器分布图

    Figure  2.  Distribution diagram of strains and sensors for ϕ480 mm composite shell

    图  3  结构-防热一体化ϕ480 mm复合材料壳体圆筒段应变-压强曲线 (a)环向应变;(b)轴向应变

    Figure  3.  Strain-pressure curves of cylinder section of ϕ480 mm structure-heat protection integrated composite shell  (a)hoop strain;(b)axial strain

    图  4  结构-防热一体化ϕ480mm复合材料壳体声发射特征曲线 (a)压强-时间曲线;(b)事件-时间曲线;(c)累积能量-时间曲线;(d)事件-通道曲线

    Figure  4.  Acoustic emission curves of ϕ480mm structure-heat protection integrated composite shell  (a)pressure-time curve;(b) event-time curve;(c)accumulative energy-time curve;(d) event-channel curve

    图  5  中高幅度、短持续时间事件的声发射信号 (a)中高幅度、短时间事件-时间分布;(b)中高幅度、短时间事件-通道分布

    Figure  5.  Acoustic emission signals of medium-high amplitude and short duration events  (a)medium-high amplitude short duration event-time distribution ;(b)medium-high amplitude short duration event-channel distribution

    图  6  高幅度、长持续时间事件的声发射信号 (a)高幅度、长持续时间事件-时间分布;(b)高幅度、长持续时间事件-通道分布

    Figure  6.  Acoustic emission signals of large amplitude and long duration events  (a)high amplitude long duration event-time distribution;(b)high amplitude long duration event-channel distribution

    图  7  结构-防热一体化ϕ480 mm壳体压强曲线和爆破残骸 (a)爆破压强-时间曲线;(b)水压爆破残骸

    Figure  7.  Pressure curve and remain of ϕ480 mm composite shell after hydraulic burst test  (a)burst pressure and time curve;(b) remain after hydraulic burst test

  • [1] 丘哲明. 固体火箭发动机材料与工艺[M]. 北京: 中国宇航出版社, 1995.
    [2] 王元有. 固体火箭发动机设计[M]. 北京: 国防工业出版社, 1984.
    [3] 姜贵庆, 刘连元. 高速气流传热与烧蚀热防护[M]. 北京: 国防工业出版社, 2003.
    [4] 樊钰,叶定友,杨月诚. 复合材料壳体气动加热温度场研究[J]. 固体火箭技术,2013,36(3):381-384.

    FAN Y,YE D Y,YANG Y C. Research on the temperature field of composite material case with aerodynamic heating[J]. Solid Rocket Technology,2013,36(3):381-384.
    [5] 刘萝威,严明. 用于战术导弹推进系统的火箭发动机复合材料壳体[J]. 飞航导弹,2007(3):45-47. doi: 10.3969/j.issn.1009-1319.2007.03.010

    LIU L W,YAN M. Application for the propulsion system of solid rocket motor case of tactical missile[J]. Winged Missile,2007(3):45-47. doi: 10.3969/j.issn.1009-1319.2007.03.010
    [6] 李琳,朱小飞,杨科,等. 国内外战术导弹外防护涂层技术现状与发展趋势[J]. 航空制造技术,2016,59(14):47-51.

    LI L,ZHU X F,YANG K,et al. Progress in external ablation-resistant coating for tactical missile[J]. Aeronautical Manufacturing Technology,2016,59(14):47-51.
    [7] SPINNNER M,EDGAR R F,WINTER VISKANTA R. Studies on high-temperature multilayer thermal insulation[J]. International Journal of Heat and Mass Transter,2004(47):1305-1312.
    [8] 李威,郭权锋. 碳纤维复合材料在航天领域的应用[J]. 中国光学,2011,4(3):201-212. doi: 10.3969/j.issn.2095-1531.2011.03.001

    LI W,GUO Q F. Application of carbon fiber composites to cosmonautic fields[J]. Chinese Optics,2011,4(3):201-212. doi: 10.3969/j.issn.2095-1531.2011.03.001
    [9] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6): 1629-1650.

    XIONG J, LI Z B, LIU H B, et a1. Advances in aerospace light weigh composite shell structure[J]. Acta Materiae Compositae Sinaca, 202l, 38(6): 1629-1650.
    [10] 嵇培军,王国勇,赵亮,等. 树脂基结构复合材料的研究进展[J]. 宇航材料工艺,2015,45(4):1-5. doi: 10.3969/j.issn.1007-2330.2015.04.001

    JI P J,WANG G Y,ZHAO L,et al. Developments of resin matrix structural composites[J]. Aerospace Materials&Technology,2015,45(4):1-5. doi: 10.3969/j.issn.1007-2330.2015.04.001
    [11] 赵云峰,孙宏杰,李仲平. 航天先进树脂基复合材料制造技术及其应用[J]. 宇航材料工艺,2016,46(4):1-7.

    ZHAO Y F,SUN H J,LI Z P. Manufacturing technology and its application of aerospace advanced polymer matrix composites[J]. Aerospace Materials&Technology,2016,46(4):1-7.
    [12] 刘萝威,曹运红. 高温树脂基复合材料在超声速导弹弹体上的应用[J]. 宇航材料工艺,2002,32(5):15-20. doi: 10.3969/j.issn.1007-2330.2002.05.004

    LIU L W,CAO Y H. High-temperature resistant resin matrix composite applications to supersonic missile[J]. Aerospace Materials&Technology,2002,32(5):15-20. doi: 10.3969/j.issn.1007-2330.2002.05.004
    [13] 沃丁柱. 复合材料大全[M]. 北京: 化学工业出版社, 2000.
    [14] 霍达. 碳纤维增强树脂基复合材料损伤力学模型[D]. 大连: 大连理工大学, 2018.

    HUO D. Damage mechanics model of carbon fiber reinforced polymer[D]. Dalian: Dalian University of Technology, 2018.
    [15] 习年生,于志成,陶春虎. 纤维增强复合材料的损伤特征及失效分析方法[J]. 航空材料学报,2000,20(2):55-63. doi: 10.3969/j.issn.1005-5053.2000.02.010

    XI N S,YU Z C,TAO C H. Damage characterization and failure analysis in fiber reinforced composites[J]. Journal of Aeronautical Materials,2000,20(2):55-63. doi: 10.3969/j.issn.1005-5053.2000.02.010
    [16] 郭勇,李大纲,陈玉霞,等. 声发射在纤维增强聚合物基复合材料中的应用进展[J]. 工程塑料应用,2013,41(4):107-110. doi: 10.3969/j.issn.1001-3539.2013.04.025

    GUO Y,LI D D,CHEN Y X,et al. Application progress of AE in fiber reinforced polymer matrix composites[J]. Engineering Plastics Application,2013,41(4):107-110. doi: 10.3969/j.issn.1001-3539.2013.04.025
    [17] 刘怀喜,张恒,闫耀辰. 声发射技术在复合材料中的应用及研究进展[J]. 纤维复合材料,2002,19(4):50-52. doi: 10.3969/j.issn.1003-6423.2002.04.015

    LIU H X,ZHANG H,YAN Y C. Application and study progress of acoustic emission technology in composite material[J]. Fiber Composites,2002,19(4):50-52. doi: 10.3969/j.issn.1003-6423.2002.04.015
    [18] 倪迎鸽,杨宇,吕毅,等. 声发射在复合材料损伤机理研究的应用现状及发展趋势[J]. 玻璃钢/复合材料,2019(8):115-126.

    NI Y G,YANG Y,LV Y,et al. Application status and development trend of acoustic emission in research on damage of composite materials[J]. FRP/Composite,2019(8):115-126.
    [19] QJ2914-1997. 复合材料结构件声发射检测方法[S]. 北京: 中国航天工业总公司, 1997.

    QJ2914-1997. Acoustic emission testing method for composite structural parts[S]. Beijing: China Aerospace Industry Corporation, 1997.
    [20] 庞虎平,冯琰妮,崔万继. 复合材料缠绕壳体外载荷试验声发射信号分析[J]. 宇航材料工艺,2014,44(3):98-100.

    PANG H P,FENG Y N,CUI W J. Analysis of AE in external load test of composite winding shell[J]. Aerospace Materials&Technology,2014,44(3):98-100.
    [21] 黄展鸿, 黄春芳, 张鉴炜, 等. 声发射技术在纤维增强复合材料损伤检测和破坏过程中的应用研究进展[J]. 材料导报, 2018, 32(4): 1122-1128.1122-1128. )

    (HANG Z H, HUANG C F, ZHANG J W, et al. Acoustic emission technique for damage and failure process determination of fiber-reinforced polymer composites: an application review[J]. Materials Reports, 2018, 32(4):
    [22] 杨明炜. 声发射检测[M]. 北京: 机械工业出版社, 2005: 74-75
    [23] 王美玲, 王小宾. 复合材料固体发动机壳体损伤的无损检测技术和性能评价[R]. 西安: 中国航天科技集团有限公司第四研究院, 2000.

    WANG M L, WANG X B. Nondestructive testing technology and performance evaluation of composite solid motor case damage[R]. Xi’an: The Fourth Institute of CASC, 2000.
  • 加载中
图(7)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  5
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-01-06
  • 网络出版日期:  2022-04-22

目录

    /

    返回文章
    返回