Research progress in composition design, microstructure and properties of refractory high entropy alloys
-
摘要: 高熵合金被定义为含有4种或4种以上主要元素的合金,主要元素的原子分数大于5%且不超过35%,具有高强度、高耐磨性、高耐腐蚀性等优异的性能。难熔高熵合金是基于难熔元素的高熵合金而设计开发的一种新型高温合金,其在航空航天、石油化工等领域具有广阔的应用前景,有望取代传统的高温合金。本文综述了难熔高熵合金一般是从元素选择和添加微量的元素等方面进行成分设计,其相组成有单相组织和双相组织等结构,研究了难熔高熵合金的制备方法和性能特点,并且在文章最后指出了难熔高熵合金目前所面临的问题与挑战。希望通过本文综述,可以为科研工作者在难熔高熵合金的组分设计,微观组织调控以及性能开发等方面提供有价值的参考。Abstract: High entropy alloy is defined as an alloy containing four or more main elements. The atomic fraction of the main elements is greater than 5% and not more than 35%, which has excellent properties such as high strength, high wear resistance and high corrosion resistance. Refractory high-entropy alloy is a new type of superalloy designed and developed based on high-entropy alloy of refractory elements, which has broad application prospects in aerospace, petrochemical and other fields, and is expected to replace traditional superalloys. This paper reviews the composition design of refractory high-entropy alloys from the aspects of element selection and addition of trace elements, and its phase composition has single-phase structure and duplex structure, and the preparation method and performance characteristics of refractory high-entropy alloys are studied, and finally gives the problems and challenges faced by refractory high entropy alloys. This review provides a valuable reference for researchers in the component design, microstructure regulation and performance development of refractory high entropy alloys.
-
表 1 难熔高熵合金元素的混合焓[19]
Table 1. Enthalpy of mixing of metal elements of refractory high entropy alloys[19]
Elements Enthalpy of mixing/(kJ·mol−1) Ti Zr Hf Nb Mo Ta W V Al Cr Ti 0 0 0 2 −4 1 −6 −2 −30 −7 Zr 0 0 0 4 −6 3 −9 −2 −44 −12 Hf 0 0 0 4 −4 3 −6 −2 −39 −9 Nb 2 4 4 0 −6 0 −8 −1 −18 −7 Mo −4 −6 −4 −6 0 −5 0 0 −5 0 Ta 1 3 3 0 −5 0 −7 −1 −19 −7 W −6 −9 −6 −8 0 −7 0 −1 −2 1 V −2 −2 −2 −1 0 −1 −1 0 −16 −2 Al −30 −44 −39 −18 −5 −19 −2 −16 0 0 Cr −7 −12 −9 −7 0 −7 1 −2 −10 0 表 2 几种金属元素的密度ρ、熔点Tl和原子半径r
Table 2. Density ρ, melting point T1 and atomic radius r of several metal elements
Element ρ/(g·cm−3) Tl/℃ r/nm Tl/ρ/(℃·g−1·cm3) Ti 4.056 1668 0.2 411.2 Zr 6.49 1852 0.216 285.4 Hf 13.31 2227 0.159 167.3 Nb 8.57 2468 0.208 288.0 Mo 10.23 2620 0.139 256.1 Ta 16.65 2996 0.209 179.9 W 19.35 3410 0.14 176.2 V 5.96 1890 0.132 317.1 Al 2.7 660 0.143 244.4 Cr 7.19 1970 0.128 274.0 表 3 难熔高熵合金的微观组织和力学性能
Table 3. Mechanical properties of some refractory high entropy alloys
Alloys Phases ρ/(g·cm3) σ0.2/MPa σk/MPa εp/% Ref. NbMoTaW BCC — 1058 1211 1.5 [4] NbMoTaW BCC — 405(1600 ℃) 600(1600 ℃) >25 [4] NbMoTaWV BCC — 1246 1087 0.5 [4] NbMoTaWV BCC — 477(1600 ℃) — 0.95 [4] HfMoTaTiZr BCC 10.21 1600 — 4 [5] HfMoTaTiZr BCC 10.21 404(1200 ℃) — >30 [5] WMoVCrTa BCC 11.52 — 995 6.2 [18] TaNbHfZrTi BCC 9.94 929 — >50 [6] HfMoNbTaTiZr BCC 9.95 556(1200 ℃) — >30 [5] HfMoNbTaTiZr BCC 9.95 1512 — 12 [5] Nb42Mo20Ti13Cr12V12Ta1 BCC 8.02 2680 3896 5.2 [21] Ti0.5MoNbTaV BCC 9.99 2563 2723 8.6 [46] Ti1MoNbTaV BCC 9.45 2280 3238 24.9 [46] Al0CrNbVMo BCC 8.03 2743 — 9.9 [22] Al0.5CrNbVMo BCC 7.75 2497 — 13.5 [22] Al1.0CrNbVMo BCC 7.05 2326 — 18.1 [22] Al0CrNbVMo BCC 8.03 1513(1000 ℃) — 16.4 [22] Al0.5CrNbVMo BCC 7.75 1178(1000 ℃) — 27.4 [22] Al1.0CrNbVMo BCC 7.05 1085(1000 ℃) — >30 [22] Al10Ti40V20Nb20Mo10 BCC 6.10 900 — — [50] Al10Ti40V20Nb20Mo10 BCC 6.10 520(800 ℃) — — [50] Al15Ti35V20Nb20Mo10 BCC 6.03 971 — — [50] Al15Ti35V20Nb20Mo10 BCC 6.03 550(800 ℃) — — [50] Al20Ti30V20Nb20Mo10 BCC 5.88 1187 — — [50] Al20Ti30V20Nb20Mo10 BCC 5.88 624(800 ℃) — — [50] Al0HfNbTiZr BCC 8.56 706 — >60 [73] Al0.5HfNbTiZr BCC 7.71 1120 — >60 [73] Al0.75HfNbTiZr BCC 7.43 1331 2771 51 [73] Al1.0HfNbTiZr BCC 7.21 1582 2184 33 [73] Al1.25HfNbTiZr BCC 7.05 1620 1754 17 [73] Al1.5HfNbTiZr BCC 6.86 1746 1864 11 [73] Al0MoNbTaTiV BCC 9.33 1227.9 2066 30 [49] Al0.2MoNbTaTiV BCC 9.12 1292 1791 16 [49] Al0.4MoNbTaTiV BCC 8.98 1332.2 1776 13 [49] Al0.6MoNbTaTiV BCC 8.79 1352.9 1868 21 [49] Al1MoNbTaTiV BCC 8.15 1391.2 1436 9 [49] ZrTiHfNb0.5Ta0.5O0.05 BCC — 955 — >50 [73] ZrTiHfNb0.5Ta0.5O0.05 BCC — 327(800 ℃) — >50 [73] ZrTiHfNb0.5Ta0.5O0.1 BCC — 1097 — >50 [73] ZrTiHfNb0.5Ta0.5O0.1 BCC — 380(800 ℃) — >50 [73] ZrTiHfNb0.5Ta0.5O0.2 BCC — 1393 — 8.2 [73] ZrTiHfNb0.5Ta0.5O0.2 BCC — 537(800 ℃) — >50 [73] AlNb2TiV B2 6.19 1043 — — [12] TiZrNbMoTa(1300 ℃ SPS) BCC+FCC 8.43 — 3612 10.4 [16] TiZrNbMoTa(1400 ℃ SPS) BCC+FCC 8.68 — 3759 12.1 [16] TiZrNbMoTa(1600 ℃ SPS) BCC+FCC 8.76 — 3453 — [16] NbMoTaTi0.5Ni0.5 BCC+FCC — 1750 2278 15 [17] NbMoTaTi0.5Ni0.5 BCC+FCC — 1279(600 ℃) 670(600 ℃) 28.42 [17] NbMoTaTi0.5Ni0.5 BCC+FCC — 757(800 ℃) 1034(800 ℃) 28 [17] NbMoTaTi0.5Ni0.5 BCC+FCC — 555(1000 ℃) 650(1000 ℃) 11 [17] Ti1.5MoNbTaV BCC+FCC 9.08 2696 3034 10.8 [46] Ti2MoNbTaV BCC+FCC 8.75 2824 3137 7.9 [46] Al0.2MoNbTaTiW/MC BCC+FCC 10.7 — 1805 — [65] (NbTaTiV) /Ti-C-O BCC+FCC — 1760 2270 11 [67] (NbTaTiV) /Ti-C-O BCC+FCC — 685(1000 ℃) — — [67] HfNbTaTiZr BCC+HCP 9.91 1597 — — [15] HfNbTaTiZr BCC+HCP 9.91 356(1200 ℃) — — [15] Cr0.3Hf0.5Mo0.5NbTiZr BCC+Laves — 1176 1538 14.61 [47] NbMoTaWVCr(1400℃ SPS) BCC+Laves 11.23 — 4422 — [70] NbMoTaWVCr(1500℃ SPS) BCC+Laves 11.16 3416 3834 5.3 [70] NbMoTaWVCr(1600℃ SPS) BCC+Laves 11.06 3658 3685 2 [70] NbMoTaWVCr(1700℃ SPS) BCC+Laves 11.02 3538 3538 1.9 [70] Al20Cr10Nb15Ti20V25Zr10 B2+Laves 5.55 1535 1000 0.6 [71] Al20Cr10Nb15Ti20V25Zr10 B2+Laves 5.55 1000(800 ℃) — — [71] CrNbTiZrAl0.25 BCC+Laves 5.85 — 1245 8.85 [25] TiZrNbTaN0.3 BCC — 1115 1152 13.2 [74] TiZrNbTa N0.6 BCC — 1196 1270 14.7 [74] TiZrNbTa N0.9 BCC — 1242 — 17.5 [74] (NbMoTiVSi0.2)100-xLa0 BCC+M5Si3+MSi2 — 1766 2091 16.47 [26] (NbMoTiVSi0.2)100-xLa0.1 BCC+M5Si3+MSi2 — 1868 2120 14.03 [26] (NbMoTiVSi0.2)100-xLa0.2 BCC+M5Si3+MSi2 — 1814 2122 15.34 [26] (NbMoTiVSi0.2)100-xLa0.3 BCC+M5Si3+MSi2 — 1839 2130 16 [26] (NbMoTiVSi0.2)100-xLa0.4 BCC+M5Si3+MSi2 — 1828 2085 12.83 [26] (NbMoTiVSi0.2)100-xLa0.5 BCC+M5Si3+MSi2 — 1929 2157 15.28 [26] (NbMoTiVSi0.2)95La5 BCC+M5Si3+MSi2 — 1929 2157 — [26] Hf0.5Mo0.5NbTiZrB0.1 BCC+MB2 — 1562 2006 24 [27] Hf0.5Mo0.5NbTiZrB0.3 BCC+MB2 — 1464 2038 27 [27] Hf0.5Mo0.5NbTiZrB0.7 BCC+MB2 — 1552 1957 14 [27] Hf0.5Mo0.5NbTiZrB0.9 BCC+MB2 — 1851 2181 12 [27] -
[1] LIU X L,ZHANG J X,YIN J Q,et al. Monte carlo simulation of order-disorder transition in refractory high entropy alloys:a data-driven approach[J]. Computational Materials Science,2021,187:110135. doi: 10.1016/j.commatsci.2020.110135 [2] 郭娜娜,高绪杰,朱光明,等. 难熔高熵合金的研究进展[J]. 热加工工艺,2021,50(8):1-4. doi: 10.14158/j.cnki.1001-3814.20182708QUO N N,GAO X J,ZHU G M,et al. Research progress of refractory high-entropy alloys[J]. Hot Working Technology,2021,50(8):1-4. doi: 10.14158/j.cnki.1001-3814.20182708 [3] QIAO D X,JIANG H,JIAO W N,et al. A novel series of refractory high-entropy alloys Ti2ZrHf0.5VNb x with high specific yield strength and good ductility[J]. Acta Metallurgica Sinica(English Letters),2019,32(8):925-931. doi: 10.1007/s40195-019-00921-3 [4] SENKOV O N,WILKS G B,SCOTT J M,et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics,2011,19(5):698-706. doi: 10.1016/j.intermet.2011.01.004 [5] JUAN C C,TSAI M H,TSAI C W,et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys[J]. Intermetallics,2015,62:76-83. doi: 10.1016/j.intermet.2015.03.013 [6] SENKOV O N,SCOTT J M,SENKOVA S V,et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys & Compounds,2011,509(20):6043-6048. [7] SENKOV O N,WILKS G B,MIRACLE D B,et al. Refractory high-entropy alloys[J]. Intermetallics,2010,18(9):1758-1765. doi: 10.1016/j.intermet.2010.05.014 [8] 张勇, 陈明彪, 杨潇 等. 先进高熵合金技术[M]. 北京: 化学工业出版社, 2019.ZHANG Y, CHEN M B, YANG X, et al. Advanced technology in high-entropy alloys[M]. Beijing: Chemical Industry Press, 2019. [9] 魏耀光,郭刚,李静 等. 难熔高熵合金在航空发动机上的应用[J]. 航空材料学报,2019,39(5):82-93. doi: 10.11868/j.issn.1005-5053.2019.000023WEI Y G,GUO G,LI J,et al. Application of refractory high entropy alloy in aeroengine[J]. Journal of Aeronautical Materials,2019,39(5):82-93. doi: 10.11868/j.issn.1005-5053.2019.000023 [10] 孙博,夏铭,张志彬 等. 难熔高熵合金性能调控与增材制造[J]. 材料工程,2020,48(10):1-16. doi: 10.11868/j.issn.1001-4381.2020.000281SUN B,XIA M,ZHANG Z B,et al. Property tuning and additive manufacturing of refractory high-entropy alloys[J]. Journal of Materials Engineering,2020,48(10):1-16. doi: 10.11868/j.issn.1001-4381.2020.000281 [11] 李肖逸,高绪杰,史程程 等. 共晶高熵合金研究进展[J]. 特种铸造及有色合金,2021,41(1):32-37. doi: 10.15980/j.tzzz.2021.01.006LI X Y,GAO X J,SHI C C,et al. Research progress in eutectic high entropy alloys[J]. Special Casting and Nonferrous Alloys,2021,41(1):32-37. doi: 10.15980/j.tzzz.2021.01.006 [12] LIU X W,BAI Z C,DING X F,et al. A novel light-weight refractory high-entropy alloy with high specific strength and intrinsic deformability[J]. Materials Letters,2020,287:129255. [13] YURCHENKO N Y,PANINA E S,ZHEREBTSOV S V,et al. Microstructure evolution of a novel low-density Ti-Cr-Nb-V refractory high entropy alloy during cold rolling and subsequent annealing[J]. Materials Characterization,2019,158:109980. doi: 10.1016/j.matchar.2019.109980 [14] CHEN Y W,XU Z Q,WANG M,et al. A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties[J]. Materials Science and Engineering: A,2020,792:139774. doi: 10.1016/j.msea.2020.139774 [15] YANG C,AOYAGI K,BIAN H K,et al. Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr[J]. Materials Letters,2019,254:46-49. doi: 10.1016/j.matlet.2019.07.027 [16] ZHU C L,LI Z J,HONG C F,et al. Microstructure and mechanical properties of the TiZrNbMoTa refractory high-entropy alloy produced by mechanical alloying and spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials,2020,93:105357. doi: 10.1016/j.ijrmhm.2020.105357 [17] ZHANG H,ZHAO Y Z,CAI J L,et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing[J]. Materials & Design,2021,201:109462. [18] DAS S,ROBI P S. A novel refractory WMoVCrTa high-entropy alloy possessing fine combination of compressive stress-strain and high hardness properties[J]. Advanced Powder Technology,2020,31:4619. doi: 10.1016/j.apt.2020.10.008 [19] TAKEUCHI A,INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions,2005,46:2817-2829. doi: 10.2320/matertrans.46.2817 [20] LIU Q,WANG G F,LIU Y K,et al. Hot deformation behaviors of an ultrafine-grained MoNbTaTiV refractory high-entropy alloy fabricated by powder metallurgy[J]. Materials Science and Engineering: A,2021,809:140922. doi: 10.1016/j.msea.2021.140922 [21] KANG B,KONG T Y,RAZA A,et al. Fabrication, microstructure and mechanical property of a novel Nb-rich refractory high-entropy alloy strengthened by in-situ formation of dispersoids[J]. International Journal of Refractory Metals and Hard Materials,2019,81:15-20. doi: 10.1016/j.ijrmhm.2019.02.009 [22] KANG B,KONG T Y,RYU H J,et al. Superior mechanical properties and strengthening mechanisms of lightweight Al xCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process[J]. Journal of Materials Science & Technology,2021,69:32-41. [23] BHANDARI U,ZHANG C Y,ZENG C Y,et al. Computational and experimental investigation of refractory high entropy alloy Mo15Nb20Re15Ta30W20[J]. Journal of Materials Research and Technology,2020,9(4):8929. doi: 10.1016/j.jmrt.2020.06.036 [24] BACHANI S K,WANG C J,LOU B S,et al. Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content[J]. Surface and Coatings Technology,2020,403:126351. [25] ZHU M,YAO L J,LIU Y Q,et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAl x(0.25≤x≤1.25) eutectic refractory high-entropy alloy[J]. Materials Letters,2020,272:127869. doi: 10.1016/j.matlet.2020.127869 [26] XU Q,CHEN D Z,WANG C R,et al. Effects of La on microstructure and mechanical properties of NbMoTiVSi0.2 refractory high entropy alloys[J]. Transactions of Nonferrous Metals Society of China,2021,31(2):512-520. doi: 10.1016/S1003-6326(21)65513-9 [27] GAO X J,WANG L,GUO N N,et al. In-situ development of MB2 and their effect on microstructure and mechanical properties of refractory Hf0.5Mo0.5NbTiZr high entropy alloy matrix composites[J]. International Journal of Refractory Metals and Hard Materials,2021,96:105473. doi: 10.1016/j.ijrmhm.2021.105473 [28] YANG X,ZHANG Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics,2012,132(2/3):233-238. doi: 10.1016/j.matchemphys.2011.11.021 [29] KING D M,MIDDLEBURGH S C,MCGREGOR A G,et al. Predicting the formation and stability of single phase high-entropy alloys[J]. Acta Materialia,2016,104:172-179. doi: 10.1016/j.actamat.2015.11.040 [30] LEE C H,SONG G,GAO M C,et al. Lattice distortion in a strong and ductile refractory high-entropy alloy[J]. Acta Materialia,2018,160:158-172. doi: 10.1016/j.actamat.2018.08.053 [31] LI Q Y,ZHANG H,LI D C,et al. The effect of configurational entropy on mechanical properties of single BCC structural refractory high-entropy alloys systems[J]. International Journal of Refractory Metals and Hard Materials,2020,93:105370. doi: 10.1016/j.ijrmhm.2020.105370 [32] LI Z M,KÖRMANN F,GRABOWSKI B,et al. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity[J]. Acta Materialia,2017,136:262-270. doi: 10.1016/j.actamat.2017.07.023 [33] MA D C,GRABOWSKI B,KÖRMANN F,et al. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one[J]. Acta Materialia,2015,100:90-97. doi: 10.1016/j.actamat.2015.08.050 [34] KANG B C,LEE J H,RYU H J,et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science & Engineering:A,2018,712:616-624. [35] YANG X,CHEN S Y,COTTON J D,et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium[J]. JOM,2014,66(10):2009-2020. doi: 10.1007/s11837-014-1059-z [36] FENG X B,ZHANG J Y,WANG Y Q,et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films[J]. International Journal of Plasticity,2017,95:264-277. doi: 10.1016/j.ijplas.2017.04.013 [37] ZOU Y,MA H,SPOLENAK R. Ultrastrong ductile and stable high-entropy alloys at small scales[J]. Nature Communications,2015,6(1):7748. doi: 10.1038/ncomms8748 [38] POULIA A,GEORGATIS E,LEKATOU A,et al. Microstructure and wear behavior of a refractory high entropy alloy[J]. International Journal of Refractory Metals and Hard Materials,2016,57:50-63. doi: 10.1016/j.ijrmhm.2016.02.006 [39] WU Y D,CAI Y H,WANG T,et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters,2014,130:277-280. doi: 10.1016/j.matlet.2014.05.134 [40] YEH J W,CHEN S K,LIN S J,et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advances Engineering and Materials,2004,6(5):299-303. doi: 10.1002/adem.200300567 [41] CAI Z B,JIN G,CUI X F,et al. Experimental and simulated data about microstructure and phase composition of a NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering[J]. Vacuum,2016,124:5-10. doi: 10.1016/j.vacuum.2015.11.007 [42] HUANG M T,WANG C M,CUI H Z,et al. Investigation of the structure and properties of AlCrCuFeNiVx high-entropy alloys[J]. Vacuum,2020,173:109129. doi: 10.1016/j.vacuum.2019.109129 [43] WASEEM W A,LEE J,LEE H M,et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy Ti xWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials[J]. Materials Chemistry and Physics,2018,210:87-94. doi: 10.1016/j.matchemphys.2017.06.054 [44] ZHANG F,KATTNER U. Calphad and the high entropy alloy[J]. Journal of Phase Equilibria and Diffusion,2015,36(1):1-2. doi: 10.1007/s11669-014-0360-4 [45] HAMED N Z,ALIREZA K R,JALIL V. Design of a low density refractory high entropy alloy in non-equiatomic W-Mo-Cr-Ti-Al system[J]. Vacuum,2020,181:109614. doi: 10.1016/j.vacuum.2020.109614 [46] LIU Q,WANG G F,SUI X C,et al. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering[J]. Journal of Materials Science & Technology,2019,35(11):2600-2607. [47] GAO X J,WANG L,GUO N N,et al. Microstructure characteristics and mechanical properties of Hf0.5Mo0.5NbTiZr refractory high entropy alloy with Cr addition[J]. International Journal of Refractory Metals and Hard Materials,2021,95:105405. doi: 10.1016/j.ijrmhm.2020.105405 [48] GUO S,LIU C T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science:Materials International,2011,21:433-446. doi: 10.1016/S1002-0071(12)60080-X [49] GE S F,FU H M,ZHANG L,et al. Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy[J]. Materials Science and Engineering: A,2020,784:139275. doi: 10.1016/j.msea.2020.139275 [50] XU Z Q,MA Z L,WANG M,et al. Design of novel low-density refractory high entropy alloys for high-temperature applications[J]. Materials Science and Engineering: A,2019,755:318-322. doi: 10.1016/j.msea.2019.03.054 [51] CHEN H,KAUFFMANN A,GORR B,et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al[J]. Journal of Alloys and Compounds,2016,661:206-215. doi: 10.1016/j.jallcom.2015.11.050 [52] HAN Z D,CHEN N,ZHAO S F,et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J]. Intermetallics,2017,84:153-157. doi: 10.1016/j.intermet.2017.01.007 [53] SENKOV O N,JENSEN J K,PILCHAK A L,et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials & Design,2018,139:498-511. [54] GUO Z,ZHANG A,HAN J,et al. Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo high-entropy alloys[J]. Materials Science,2019,54:5844-5851. [55] SENKOV O N,COUZINIE J P,RAO S I,et al. Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40[J]. Materialia,2020,9:100627. doi: 10.1016/j.mtla.2020.100627 [56] CHEN S Y,TONG Y,TSENG K K,et al. Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures[J]. Scripta Materialia,2019,158:50-56. doi: 10.1016/j.scriptamat.2018.08.032 [57] STEPANOV N D,YURCHENKO N Y,ZHEREBTSOV S V,et al. Aging behavior of the HfNbTaTiZr high entropy alloy[J]. Materials Letters,2018,211:87-90. doi: 10.1016/j.matlet.2017.09.094 [58] TODA-CARABALLO I,RIVERA-DIVERA-DÍAZ-DEL-CASTILLO E J. Modelling solid solution hardening in high entropy alloys[J]. Acta Materialia,2015,85:14-23. doi: 10.1016/j.actamat.2014.11.014 [59] FU Z Q,CHEN W P,WEN H M,et al. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy[J]. Acta Materialia,2016,107:59-71. doi: 10.1016/j.actamat.2016.01.050 [60] FU Z,KOC R. Processing and characterization of TiB2-TiNiFeCrCoAl high-entropy alloy composite[J]. Journal of the American Ceramic Society,2017,100:2803-2813. doi: 10.1111/jace.14814 [61] JOHNSON J L,GERMAN R M. Phase equilibria effects on the enhanced liquid phase sintering of tungsten-copper[J]. Metallurgical Transactions A,1993,24(11):2369-2377. doi: 10.1007/BF02646516 [62] WANG G F,LIU Q,YANG J L,et al. Synthesis and thermal stability of a nanocrystalline MoNbTaTiV refractory high-entropy alloy via mechanical alloying[J]. International Journal of Refractory Metals & Hard Materials,2019,84:104988. [63] ONAWALE O T, COBBINAH P V, NZEUKOU R A, et al. Synthesis route, microstructural evolution, and mechanical property relationship of high-entropy alloys (HEAs): a review[]. Materials, 2021, 14: 3065. [64] WASEEM O A,RYU H J. Powder metallurgy processing of a W xTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications[J]. Scienctific Reports,2017,7:1926. doi: 10.1038/s41598-017-02168-3 [65] HAN J S,SU B,ZHANG A J,et al. Forming and characterization of Al0.2MoNbTaTiW/MC refractory high-entropy alloy composite by spark plasma sintering and hot extrusion[J]. Materials Letters,2021,284(P2):128979. [66] 吕昭平,雷智锋,黄海龙,等. 高熵合金的变形行为及强韧化[J]. 金属学报,2018,54(11):1553-1566. doi: 10.11900/0412.1961.2018.00372LU Z P,LEI Z F,HUANG H L,et al. Deformation behavior and toughening of high-entropy alloys[J]. Acta Metallurgica Sinic,2018,54(11):1553-1566. doi: 10.11900/0412.1961.2018.00372 [67] WANG M,MA Z L,XU Z Q,et al. Designing V xNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications[J]. Scripta Materialia,2021,191:131-136. doi: 10.1016/j.scriptamat.2020.09.027 [68] FU A,GUO W M,LIU B,et al. A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties[J]. Journal of Alloys and Compounds,2020,815:152466. doi: 10.1016/j.jallcom.2019.152466 [69] TIAN F Y,VARGA L K,CHEN N X,et al. Empirical design of single phase high-entropy alloys with high hardness[J]. Intermetallics,2015,58:1-6. doi: 10.1016/j.intermet.2014.10.010 [70] LONG Y,LIANG X B,SU K,et al. A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties[J]. Journal of Alloys and Compounds,2019,780:607-617. doi: 10.1016/j.jallcom.2018.11.318 [71] YURCHENKO N,PANINA E,TIKHONOVSKY M,et al. Structure and mechanical properties of an insitu refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite[J]. Materials Letters,2020,264:127372. doi: 10.1016/j.matlet.2020.127372 [72] CHEN Y W,LI Y K,CHENG X W,et al. Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5Ox (x = 0.05, 0.1, 0.2) high-entropy alloys[J]. Materials Letters,2018,228:145-147. doi: 10.1016/j.matlet.2018.05.123 [73] WANG W,ZHANG Z T,NIU J Z,et al. Effect of Al addition on structural evolution and mechanical properties of the Al xHfNbTiZr high-entropy alloys[J]. Materials Today Communications,2018,16:242-249. doi: 10.1016/j.mtcomm.2018.06.004 [74] WANG R X,TANG Y,LEI Z F,et al. Achieving high strength and ductility in nitrogen-doped refractory highentropy alloys[J]. Materials & Design,2022,213:110356. [75] POLE M,SADEGHILARIDJANI M,SHITTU J,et al. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette[J]. Journal of Alloys and Compounds,2020,843:156004. doi: 10.1016/j.jallcom.2020.156004 -