叠层缝合碳纤维增强铝基复合材料低速冲击及冲击后剩余压缩力学性能实验研究

顾姝 蔡长春 余欢 徐志锋 王振军

顾姝, 蔡长春, 余欢, 徐志锋, 王振军. 叠层缝合碳纤维增强铝基复合材料低速冲击及冲击后剩余压缩力学性能实验研究[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000209
引用本文: 顾姝, 蔡长春, 余欢, 徐志锋, 王振军. 叠层缝合碳纤维增强铝基复合材料低速冲击及冲击后剩余压缩力学性能实验研究[J]. 航空材料学报. doi: 10.11868/j.issn.1005-5053.2021.000209
GU Shu, CAI Changchun, YU Huan, XU Zhifeng, WANG Zhenjun. Experimental study on residual compression mechanical properties after low-speed impact for laminated stitched carbon fiber reinforced aluminum matrix composite[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000209
Citation: GU Shu, CAI Changchun, YU Huan, XU Zhifeng, WANG Zhenjun. Experimental study on residual compression mechanical properties after low-speed impact for laminated stitched carbon fiber reinforced aluminum matrix composite[J]. Journal of Aeronautical Materials. doi: 10.11868/j.issn.1005-5053.2021.000209

叠层缝合碳纤维增强铝基复合材料低速冲击及冲击后剩余压缩力学性能实验研究

doi: 10.11868/j.issn.1005-5053.2021.000209
基金项目: 国家自然科学基金资助项目(51765045,52165018);航空科学基金资助项目(2019ZF056013);江西省自然科学基金资助项目(20202ACBL2040101);南昌航空大学研究生创新专项资金项目(YC2020018)
详细信息
    通讯作者:

    余欢(1960—),男,博士,教授,主要从事轻合金加工科学与技术研究,联系地址:江西省南昌市丰和南大道696号(330063),E-mail:yuhwan@163.com

  • 中图分类号: TB333

Experimental study on residual compression mechanical properties after low-speed impact for laminated stitched carbon fiber reinforced aluminum matrix composite

  • 摘要: 以铝合金ZL301为基体,碳纤维叠层缝合织物为增强体,采用真空压力浸渗工艺制备叠层缝合碳纤维增强铝基(叠层缝合Cf/Al)复合材料。通过室温落锤冲击实验,研究冲击载荷及能量随时间的变化行为规律,采用光学显微镜和工业数字X射线成像系统观测其冲击损伤形貌,分析冲击损伤机理。通过冲击后压缩(CAI)实验,研究复合材料在不同冲击能量下沿经纱方向的剩余强度,观察压缩试样宏观与微观断口形貌,分析压缩失效机制。结果表明:冲击载荷作用下叠层缝合Cf/Al复合材料发生了显著的局部损伤,正面损伤区域出现了较明显的凹坑,而其背面出现明显的沿经向的裂纹,裂纹长度随冲击能量增加而增大,损伤模式主要表现为基体开裂和纤维断裂拔出;冲击后的经向压缩强度随冲击能量的增大而下降,压缩后的复合材料出现了从冲击裂纹端部沿纬纱方向扩展到试样边缘的横向裂纹,压缩宏观断口中纱线结构破坏严重程度随冲击能量的增加而加重,而压缩后的微观断口均呈现出纤维剪切断裂后参差不齐的形貌。

     

  • 图  1  封装示意图

    Figure  1.  Schematic diagram of packaging

    图  2  夹具示意图

    Figure  2.  Schematic diagram of fixture

    图  3  冲击后压缩实验夹持状态

    Figure  3.  Clamping state of compression after impact test

    图  4  不同能量冲击后试样的正反面损伤形貌及DR成像 (a)冲击能量15 J;(b)冲击能量23 J;(c)冲击能量30 J;(1)冲击面;(2)反面;(3)DR图像;

    Figure  4.  Front and back damage macrographs and DR images of specimens after impact with different energy levels  (a)impact energy 15 J;(b)impact energy 23 J;(c)impact energy 30 J;(1)impact surface;(2)back side;(3)DR image;

    图  5  不同冲击能量下试样的时间-载荷/能量曲线与位移-载荷曲线  (a)时间-载荷曲线;(b)时间-能量曲线;(c)位移-载荷曲线

    Figure  5.  Time-load/energy curves and displacement-load curves of specimens under different impact energy levels  (a)time-load curves;(b)time-energy curves;(c)displacement-load curves

    图  6  不同冲击能量下叠层缝合Cf/Al复合材料的剩余压缩强度

    Figure  6.  Residual compressive strength of Cf/Al composites with laminated stitch under different impact energy levels

    图  7  叠层缝合Cf/Al复合材料CAI实验后的破坏形貌示意图 (a)冲击能量15 J;(b)冲击能量23 J;(c)冲击能量30 J

    Figure  7.  Failure morphology diagrams of Cf/Al composites with laminated stitch after CAI tests  (a)impact energy 15 J;(b)impact energy 23 J;(c)impact energy 30 J

    图  8  叠层缝合Cf/Al复合材料CAI破坏形貌及局部放大图  (a)冲击能量15 J;(b)冲击能量23 J;(c)冲击能量30 J

    Figure  8.  CAI failure morphologies and local enlarged drawings of Cf/Al composites with laminated stitch  (a)Impact energy 15 J;(b)Impact energy 23 J;(c)Impact energy 30 J

    图  9  叠层缝合Cf/Al复合材料CAI断口微观形貌 (a)冲击能量15 J;(b)冲击能量23 J;(c)冲击能量30 J;(1)低倍;(2)高倍

    Figure  9.  Micro morphologies of CAI fracture of Cf/Al composites with laminated stitch  (a)impact energy 15 J;(b)impact energy 23 J;(c)impact energy 30 J;(1)low power;(2)high power

    图  10  不同冲击能量下叠层缝合Cf/Al复合材料的CAI位移-载荷曲线

    Figure  10.  CAI displacement-load curves of Cf/Al composites with laminated stitch under different energy levels

    表  1  叠层缝合编织工艺参数

    Table  1.   Technological parameters of laminated stitching and knitting

    Raw materialSize of
    fabric/mm
    Yarn specificationSuture spacing/
    mm
    Density of fabric/
    (g·cm−3)
    Volume fraction/
    %
    M40JB-6000-50B220×190×5.5Warp yarns:6K×2 yarns
    Weft yarns:6K×1 yarns
    3×30.9250
    下载: 导出CSV

    表  2  M40J碳纤维的性能参数

    Table  2.   Property parameters of M40J carbon fibers

    Average
    diameter/μm
    Tensile
    strength/MPa
    Young’s
    modulus/GPa
    Density/
    (g·cm−3)
    544103771.77
    下载: 导出CSV

    表  3  ZL301合金成分(质量分数/%)

    Table  3.   Composition of ZL301 alloy (mass fraction/%)

    MgSiMnTiZnCuAl
    9.5-11.00.30.150.150.150.1Bal
    下载: 导出CSV
  • [1] 张晓虎,孟宇,张炜. 碳纤维增强复合材料技术发展现状及趋势[J]. 纤维复合材料,2004(1):50-53. doi: 10.3969/j.issn.1003-6423.2004.01.015

    ZHANG X H,MENG Y,ZHANG W. The state of the art and trend of carbon fiber reinforced composites[J]. Fiber Composites,2004(1):50-53. doi: 10.3969/j.issn.1003-6423.2004.01.015
    [2] 张志远,李伟,蒋鹏,等. 碳纤维复合材料层合板低速冲击损伤特性研究[J]. 兵器材料科学与工程,2021,44(4):34-39.

    ZHANG Z Y,LI W,JIANG P,et al. Damage characteristics of carbon fiber composite laminates under low­velocity impact[J]. Ordnance Material Science and Engineering,2021,44(4):34-39.
    [3] LIU H B,FALZON G B,TAN W. Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates[J]. Composites Part B,2018,136:101-108. doi: 10.1016/j.compositesb.2017.10.016
    [4] 袁守忍,曹海建,钱坤. 2.5维机织复合材料低速冲击性能研究[J]. 玻璃钢/复合材料,2014(1):8-12.

    YUAN S R,CAO H J,QIAN K. The study of low-velocity impact performance of 2.5D woven composites[J]. Fiber Reinforced Plastics/Composites,2014(1):8-12.
    [5] BEHZAD K, MEYSAM E, MOHAMMAD R N. Experimental investigation on response and failure modes of 2D and 3D woven composites under low velocity impact[J]. Journal of Materials Science, 2020, 55(3).
    [6] ASHOK K R, DEVARAJU A. A comparative investigation on cast and aging (T6) response on mechanical and dry sliding wear behavior of Al7075/SiCp metal matrix composite[J]. Surface Review and Letters, 2021, 28(6).
    [7] 李海龙,姚姗姗,金范龙,等. 环氧树脂/炭纤维布/铝复合材料的力学性能和导热系数研究[J]. 炭素技术,2021,40(2):32-35.

    LI H L,YAO S S,JIN F L,et al. Mechanical properties and thermal conductivity of epoxy resin/carbon fiber cloth/aluminum composites[J]. Carbon Techniques,2021,40(2):32-35.
    [8] KHONDKER O A, LEONG K H, HERSZBERG I, et al. Impact and compression-after-impact performance of weft-knitted glass textile composites[J]. Composites Part A, 2004, 36(5).
    [9] 王莉,熊舒,肇研,等. T800级碳纤维复合材料抗冲击性能[J]. 航空材料学报,2018,38(5):147-151. doi: 10.11868/j.issn.1005-5053.2017.000160

    WANG L,XIONG S,ZHAO Y,et al. Impact resistance of T800 carbon fiber composite materials[J]. Journal of Aeronautical Materials,2018,38(5):147-151. doi: 10.11868/j.issn.1005-5053.2017.000160
    [10] 马少华,郭洪杰,回丽,等. 平面编织复合材料层压板低速冲击损伤和压缩失效行为[J]. 航空材料学报,2015,35(04):39-44.

    MA S H,GUO H J,HUI L,et al. Low-velocity impact damage and compression failure behavior of plain woven composite laminate[J]. Journal of Aeronautical Materials,2015,35(04):39-44.
    [11] 崔海坡,温卫东. T300/BMP316层合板冲击后压缩强度试验[J]. 航空动力学报,2008(11):2001-2006.

    CUI H P,WEN W D. Post-impact compressive strength experiment of T300/BMP316 composite laminates[J]. Journal of Aerospace Power,2008(11):2001-2006.
    [12] 林智育,许希武,朱伟垚. 复合材料层板冲击损伤特性及冲击后压缩强度研究[J]. 航空材料学报,2011,31(1):73-80. doi: 10.3969/j.issn.1005-5053.2011.1.014

    LIN Z Y,XU X W,ZHU WY. Experimental study on impact damage characteristics and residual compressive strength of composite laminates[J]. Journal of Aeronautical Materials,2011,31(1):73-80. doi: 10.3969/j.issn.1005-5053.2011.1.014
    [13] 赵巧莉,侯玉亮,刘泽仪,等. 碳纤维平纹机织复合材料低速冲击及冲击后压缩性能多尺度分析[J]. 中国机械工程,2021:1-14.

    ZHAO Q L,HOU Y L,LIU Z Y,et al. Multi-scale modeling of the low-velocity impact and compression after impact behaviors of plain woven carbon-fiber-reinforced[J]. China Mechanical Engineering,2021:1-14.
    [14] 戴云锋,张典堂,晓东,等. 考虑偏轴角影响的2.5D机织复合材料冲击后压缩性能[J]. 轻工机械,2021,39(3):1-9. doi: 10.3969/j.issn.1005-2895.2021.03.001

    DAI Y F,ZHANG D T,LIU X D,et al. Off-axis angle effect on compressive properties of 2.5D woven composites after impact[J]. Light Industry Machinery,2021,39(3):1-9. doi: 10.3969/j.issn.1005-2895.2021.03.001
    [15] 梁军, 方国东. 三维编织复合材料力学性能分析方法[M] 哈尔滨: 哈尔滨工业大学, 2014.

    Liang J, Fang G D. Mechanical analysis method of 3D braided composites[M]. Harbin: Harbin Industry of Technology, 2014.
    [16] 严实,郭留雨,赵金阳,等. 三维五向编织复合材料低速冲击及冲击后压缩性能实验研究[J]. 材料工程,2017,45(12):65-70. doi: 10.11868/j.issn.1001-4381.2015.000861

    YAN S,GUO L Y,ZHAO J Y,et al. Experimental investigation on low-velocity impact and compression after impact properties of three-dimensional five-directional braided composites[J]. Journal of Materials Engineering,2017,45(12):65-70. doi: 10.11868/j.issn.1001-4381.2015.000861
    [17] 严柳芳,陈南梁,罗永康. 缝合技术在复合材料上的应用及发展[J]. 产业用纺织品,2007(02):1-5. doi: 10.3969/j.issn.1004-7093.2007.02.001

    YAN L F,CHEN N L,LUO Y K. Application and development in stitching technology for composites[J]. Technical Textiles,2007(02):1-5. doi: 10.3969/j.issn.1004-7093.2007.02.001
    [18] 田金梅. 叠层和编织复合材料动态特性研究的新方法[D]. 北京: 北京航空航天大学, 2005.

    TIAN J M. New analysis methods of dynamic characteristics of laminated and braided composites[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2005.
    [19] 陈卫军,余欢,徐志锋,等. 叠层穿刺Cf/Al复合材料的高温拉伸性能研究[J]. 特种铸造及有色合金,2021,41(4):502-507.

    CHEN W J,YU H,XU Z F,et al. High temperature tensile properties of laminated puncture structural Cf/Al composites[J]. Special Casting & Nonferrous Alloys,2021,41(4):502-507.
    [20] 兰泽宇,余欢,徐志锋,等. 叠层缝合结构碳纤维/Al复合材料微观特征与高温弯曲性能[J]. 复合材料学报,2021,38(9):2971-2980.

    LAN Z Y,YU H,XU Z F,et al. Microscopic feature and high temperature bending properties of carbon fiber/Al composites with laminated stitch structure[J]. Acta Materiae Compositae Sinica,2021,38(9):2971-2980.
    [21] 冯景鹏,余欢,徐志锋,等. Z向穿刺结构参数对Cf/Al复合材料显微组织与剪切性能的影响[J]. 特种铸造及有色合金,2020,40(6):653-657.

    FENG J P,YU H,XU Z F,et al. Effects of Z-direction puncture structural parameters on microstructures and shear properties of Cf/Al composites[J]. Special Casting & Nonferrous Alloys,2020,40(6):653-657.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-01-16
  • 网络出版日期:  2022-04-22

目录

    /

    返回文章
    返回