不同扫描速度下激光熔覆修复TC4合金表面性能

崔静 王宬轩 杨广峰

崔静, 王宬轩, 杨广峰. 不同扫描速度下激光熔覆修复TC4合金表面性能[J]. 航空材料学报, 2023, 43(1): 105-114. doi: 10.11868/j.issn.1005-5053.2021.000215
引用本文: 崔静, 王宬轩, 杨广峰. 不同扫描速度下激光熔覆修复TC4合金表面性能[J]. 航空材料学报, 2023, 43(1): 105-114. doi: 10.11868/j.issn.1005-5053.2021.000215
CUI Jing, WANG Chengxuan, YANG Guangfeng. Surface performance of TC4 alloy repaired by laser cladding under different scanning speeds[J]. Journal of Aeronautical Materials, 2023, 43(1): 105-114. doi: 10.11868/j.issn.1005-5053.2021.000215
Citation: CUI Jing, WANG Chengxuan, YANG Guangfeng. Surface performance of TC4 alloy repaired by laser cladding under different scanning speeds[J]. Journal of Aeronautical Materials, 2023, 43(1): 105-114. doi: 10.11868/j.issn.1005-5053.2021.000215

不同扫描速度下激光熔覆修复TC4合金表面性能

doi: 10.11868/j.issn.1005-5053.2021.000215
基金项目: 国家自然科学基金面上项目(52076212);国家自然科学基金委员会-中国民航局民航联合研究基金(U1933107);天津市研究生科研创新项目资助(2021YJSS123);中国民航大学研究生科研创新项目资助(2021YJS051)
详细信息
    通讯作者:

    杨广峰(1978—),男,博士,研究方向为激光应用技术,联系地址:天津市东丽区中国民航大学(300300),E-mail: gfyang@cauc.edu.cn

  • 中图分类号: TG156;V252;V267

Surface performance of TC4 alloy repaired by laser cladding under different scanning speeds

  • 摘要: 在当前的航空产业中,激光熔覆是一种理想的TC4合金部件修复和表面处理技术,在工艺方面具有优于传统金属修复技术的优势。本工作在功率2 kW下,通过不同的激光扫描速度,对合金试件表面进行激光熔覆修复加工,检测分析修复后表面的金相组织变化、电化学腐蚀性能和力学性能变化。结果表明:在激光修复过程中发生了显著的显微形貌变化;激光扫描速度为150 mm/min的修复表面耐腐蚀性能最佳; 200 mm/min的修复表面显微硬度和耐磨性能最佳。

     

  • 图  1  不同的扫描速度激光熔覆层宏观形貌 (a)100 mm/min;(b)150 mm/min;(c)200 mm/min;(d)300 mm/min

    Figure  1.  Macro morphologies of specimens repaired by laser cladding at various scanning speeds  (a)100 mm/min;(b)150 mm/min;(c)200 mm/min;(d)300 mm/min

    图  2  不同的扫描速度激光熔覆层截面金相宏观形貌 (a)100 mm/min;(b)150 mm/min;(c)200 mm/min;(d)300 mm/min

    Figure  2.  Cross-section metallographic macroscopic morphologies of specimens repaired by laser cladding at various scanning speeds (a)100 mm/min;(b)150 mm/min;(c)200 mm/min;(d)300 mm/min

    图  3  不同扫描速度激光熔覆层显微组织形貌 (a)100 mm/min;(b)150 mm/min;(c)200 mm/min;(d)300 mm/min;(1)熔覆层顶部;(2)熔覆层中部;(3)热影响区

    Figure  3.  Microstructures of laser cladding layers with different scanning speeds (a)100 mm/min;(b)150 mm/min;(c)200 mm/min;(d)300 mm/min;(1) top of the cladding layer;(2) middle of the cladding layer; (3) heat-affected zone

    图  4  不同扫描速度激光熔覆层XRD分析结果

    Figure  4.  Results of XRD analysis of laser cladding with different scanning speeds

    图  5  熔覆层底部和热影响区交界位置Ti/Al相对含量沿扫描距离的变化

    Figure  5.  Variation of Ti/Al relative content at the bottom of the clad layer and at the junction of the heat affected zone along the scanning distance

    图  6  扫描速度300 mm/min样品元素分布 (a) Ti元素分布;(b)对应(a)图绿色区域Al元素分布

    Figure  6.  Element distribution of sample prepared at scanning speed of 300 mm/min  (a) Ti element distribution; (b)distribution of Al element corresponding to the green area of Fig. (a)

    图  7  不同扫描速度激光熔覆层Nyquist图

    Figure  7.  Nyquist diagram of laser cladding layers with different scanning speeds

    图  8  不同扫描速度激光熔覆层的Bode图 (a)阻值图;(b)相位角图

    Figure  8.  Bode diagrams of laser fused cladding layers with different scanning speeds  (a) resistance diagram; (b) phase angle diagram

    图  9  不同扫描速度激光熔覆层极化曲线

    Figure  9.  Polarization curves of laser cladding layers with different scanning speeds

    图  10  不同扫描速度激光熔覆层不同表面距离下的维氏显微硬度

    Figure  10.  Vickers microhardness of laser cladding layers at different surface distances with different scanning speeds

    图  11  不同扫描速度激光熔覆层摩擦系数及对应摩痕轮廓

    Figure  11.  Friction coefficients of laser cladding layers with different scanning speeds and corresponding friction trace profiles

    表  1  TC4钛合金基体和熔覆粉末元素成分(质量分数/%)

    Table  1.   Composition of TC4 titanium alloy matrix and cladding powder (mass fraction/%)

    FeCNHOAlVTi
    ≤0.3≤0.1≤0.05≤0.015≤0.25.5-6.83.5-4.5Bal
    下载: 导出CSV

    表  2  扫描伏安曲线测量结果

    Table  2.   Scanning voltammetry curve measurement results

    Scanning speed/(mm·min−1)Ecorr / VIcorr / ACorrosion rate/(mm·year−1)Polarization resistance / Ω
    100−0.19571.3077×10−60.01519522093
    150−0.13395.8413×10−70.00678867556
    200−0.17181.6312×10−60.01895416215
    300−0.16837.1979×10−70.00836440113
    下载: 导出CSV

    表  3  不同扫描速度激光熔覆层磨痕测量结果

    Table  3.   Abrasion measurement results of laser cladding layers with different scanning speeds

    Scanning speed(mm·min−1Depth of friction / mmWidth of friction/ mmVolume of friction/ mm3Mass of friction / g
    1000.03110.8360.847420.003754
    1500.03820.9110.707630.003135
    2000.02510.5670.386240.001711
    3000.39350.9850.916910.004062
    (Substrate)0.04461.1461.002780.004442
    下载: 导出CSV
  • [1] 谭金花,孙荣禄,牛伟,等. TC4合金激光熔覆材料的研究现状[J]. 材料导报,2020,34(15):15132-15137. doi: 10.11896/cldb.19050077

    TAN J H,SUN R L,N W,et al. Research status of TC4 alloy laser cladding materials[J]. Materials Guide,2020,34(15):15132-15137. doi: 10.11896/cldb.19050077
    [2] ZHANG L C,CHEN L Y,WANG L Q. Surface modification of titanium and titanium alloys: technologies, developments, and future interests[J]. Advanced Engineering Materials,2020(5):22,1901258.
    [3] 张德强,刘贤德,李金华. TC4钛合金单道激光熔覆的工艺研究[J]. 机械设计与制造,2016(2):87-90. doi: 10.3969/j.issn.1001-3997.2016.02.023

    ZHANG D Q,LIU X D,LI J H. Technology research on single-pass laser cladding of TC4 titanium alloy[J]. Machinery Design and Manufacturing,2016(2):87-90. doi: 10.3969/j.issn.1001-3997.2016.02.023
    [4] 张蕾涛,刘德鑫,张伟樯,等. 钛合金表面激光熔覆涂层的研究进展[J]. 表面技术,2020,49(8):97-104. doi: 10.16490/j.cnki.issn.1001-3660.2020.08.011

    ZHANG L T,LIU D X,ZHANG W Y,et al. Research progress of laser cladding coating on titanium alloy surface[J]. Surface Technology,2020,49(8):97-104. doi: 10.16490/j.cnki.issn.1001-3660.2020.08.011
    [5] 夏思海,武美萍,马毅青,等. TiC含量对TC4合金激光熔覆层组织和性能的影响[J]. 金属热处理,2020,45(6):212-215. doi: 10.13251/j.issn.0254-6051.2020.06.044

    XIA S H,WU M P,MA Y Q,et al. The effect of TiC content on the microstructure and properties of TC4 alloy laser cladding layer[J]. Heat Treatment of Metals,2020,45(6):212-215. doi: 10.13251/j.issn.0254-6051.2020.06.044
    [6] QI C Q,ZHAN X H,GAO Q Y,et al. The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding[J]. Optics and Laser Technology,2019:119.
    [7] 刘亚楠,孙荣禄,牛伟,等. 扫描速度对Ti811合金激光熔覆涂层组织与性能的影响[J]. 表面技术,2018,47(12):134-141. doi: 10.16490/j.cnki.issn.1001-3660.2018.12.019

    LIU Y N,SUN R L,NIU W,et al. Effect of scanning speed on microstructures and properties of Ti811 alloy laser cladding coatings[J]. Surface Technology,2018,47(12):134-141. doi: 10.16490/j.cnki.issn.1001-3660.2018.12.019
    [8] ZHANG D,CUI X F,JIN G,et al. Microstructure and tribological performance of laser-cladded Ni60+ h -BN coatings on Ti-6Al-4V alloy at high temperature[J]. Tribology Transactions,2019,62(5):779-788. doi: 10.1080/10402004.2019.1617916
    [9] 谭金花,孙荣禄,牛伟,等. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报,2020,34(12):12094-12100. doi: 10.11896/cldb.19050016

    TAN J H,SUN R L,NIU W,et al. The effect of laser scanning speed on the structure and properties of laser cladding composite coating on TC4 alloy surface[J]. Materials Review,2020,34(12):12094-12100. doi: 10.11896/cldb.19050016
    [10] RASHID R A R,BARR C J,PALANISAMY S,et al. Effect of clad orientation on the mechanical properties of laser-clad repaired ultra-high strength 300 M steel[J]. Surface & Coatings Technology,2019(380)-125090.
    [11] 于童. Ti-6Al-4V激光熔覆制备耐磨复合涂层[D]. 济南: 山东大学, 2018.

    YU T. Wear-resistant composite coating prepared by Ti-6Al-4V laser cladding[D]. Jinan: Shandong University, 2018.
    [12] 邱莹,张凤英,胡腾腾,等. 激光功率对TC4表面熔覆Ti40阻燃钛合金组织及硬度的影响[J]. 中国激光,2019,46(11):167-175.

    QIU Y,ZHANG F Y,HU T T,et al. Effect of laser power on microstructure and hardness of Ti40 flame-retardant titanium alloy cladding on TC4 surface[J]. China Laser,2019,46(11):167-175.
    [13] 霍浩,梁朝阳,张安峰,等. 激光熔覆沉积含硼TC4钛合金力学性能的各向异性[J]. 中国激光,2019,46(12):117-124.

    HUO H,LIANG C Y,ZHANG A F,et al. Anisotropy of mechanical properties of boron-containing TC4 titanium alloy deposited by laser cladding[J]. China Laser,2019,46(12):117-124.
    [14] 邹海贝. TC4钛合金热处理强化工艺及相变行为研究[D]. 秦皇岛: 燕山大学, 2019.

    ZOU H B. Research on heat treatment strengthening process and phase transformation behavior of TC4 titanium alloy[D]. Qinhuangdao: Yanshan University, 2019.
    [15] 孙峰. Ti60钛合金相变动力学及组织演变研究[D]. 西安: 西北工业大学, 2015.

    SUN F. Study on phase transformation kinetics and microstructure evolution of Ti60 titanium alloy[D]. Xi’an: Northwestern Polytechnical University, 2015.
    [16] 徐铁伟. 高强TB8钛合金相变行为与组织控制研究[D]. 西安: 西北工业大学, 2016.

    XU T W. Study on phase transformation behavior and microstructure control of high-strength TB8 titanium alloy[D]. Xi’an: Northwestern Polytechnical University, 2016.
    [17] 郑江鹏,初铭强,张书彦. 铸铁材料激光熔覆修复表面强化技术研究进展[J]. 热加工工艺,2020,49(17):1-6. doi: 10.14158/j.cnki.1001-3814.20192499

    ZHENG J P,CHU M Q,ZHANG S Y. Research progress of laser cladding repairing surface strengthening technology for cast iron materials[J]. Hot Working Technology,2020,49(17):1-6. doi: 10.14158/j.cnki.1001-3814.20192499
    [18] FENG X T,LEI J B,GU H,et al. Effect of scanning speeds on electrochemical corrosion resistance of laser cladding TC4 alloy[J]. Chinese Physics B,2019,28(2):383-390.
    [19] 冯晓甜,顾宏,周圣丰,等. 送粉式激光增材制造TC4钛合金熔覆层组织及电化学腐蚀行为的研究[J]. 中国激光,2019,46(3):44-53.

    FENG X T,GU H,ZHOU S F,et al. Study on microstructure and electrochemical corrosion behavior of TC4 titanium alloy cladding layer by powder feeding laser additive manufacturing[J]. China Laser,2019,46(3):44-53.
    [20] 田蒙蒙,孙凯,廖娟,等. 热处理对钛铝复合板共挤压界面结合特性的影响[J]. 材料热处理学报,2021,42(9):22-28. doi: 10.13289/j.issn.1009-6264.2021-0147

    TIAN M M,SUN K,LIAO J,et al. Effect of heat treatment on the interfacial bonding characteristics of co-extruded titanium-aluminum composite plates[J]. Journal of Materials Heat Treatment,2021,42(9):22-28. doi: 10.13289/j.issn.1009-6264.2021-0147
    [21] CHEN Y,WANG H M. Growth morphology and mechanism of primary TiC carbide in laser clad TiC/FeAl composite coating[J]. Materials Letters,2003,57(5):1233-1238.
    [22] 韩杰阁. 激光合金化制备TC4钛合金抗高温氧化及耐磨复合涂层性能研究[D]. 武汉: 华中科技大学, 2017.

    HAN J G. Study on the properties of high temperature oxidation and wear resistance composite coating of TC4 titanium alloy prepared by laser alloying[D]. Wuhan: Huazhong University of Science and Technology, 2017.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  24
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-05-08
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回