Surface performance of TC4 alloy repaired by laser cladding under different scanning speeds
-
摘要: 在当前的航空产业中,激光熔覆是一种理想的TC4合金部件修复和表面处理技术,在工艺方面具有优于传统金属修复技术的优势。本工作在功率2 kW下,通过不同的激光扫描速度,对合金试件表面进行激光熔覆修复加工,检测分析修复后表面的金相组织变化、电化学腐蚀性能和力学性能变化。结果表明:在激光修复过程中发生了显著的显微形貌变化;激光扫描速度为150 mm/min的修复表面耐腐蚀性能最佳; 200 mm/min的修复表面显微硬度和耐磨性能最佳。Abstract: In the current aviation industry, laser melting is an ideal technique for repairing and surface treatment of TC4 alloy parts, which has advantages over traditional metal repair techniques in terms of process. In this work, laser melting repair processes were performed on the surface of alloy specimens by different laser scanning speeds at a power of 2 kW, and the changes in metallographic organization, electrochemical corrosion properties and mechanical properties of the repaired surfaces were detected and analyzed. The results show that the significant microstructural changes are occurred during the laser repair process. The best corrosion resistance of the repaired surface is achieved at a laser scanning speed of 150 mm/min. The best microhardness and wear resistance of the repaired surface are achieved at 200 mm/min.
-
Key words:
- laser cladding /
- metal surface repair /
- TC4 alloy /
- surface properties
-
图 3 不同扫描速度激光熔覆层显微组织形貌 (a)100 mm/min;(b)150 mm/min;(c)200 mm/min;(d)300 mm/min;(1)熔覆层顶部;(2)熔覆层中部;(3)热影响区
Figure 3. Microstructures of laser cladding layers with different scanning speeds (a)100 mm/min;(b)150 mm/min;(c)200 mm/min;(d)300 mm/min;(1) top of the cladding layer;(2) middle of the cladding layer; (3) heat-affected zone
表 1 TC4钛合金基体和熔覆粉末元素成分(质量分数/%)
Table 1. Composition of TC4 titanium alloy matrix and cladding powder (mass fraction/%)
Fe C N H O Al V Ti ≤0.3 ≤0.1 ≤0.05 ≤0.015 ≤0.2 5.5-6.8 3.5-4.5 Bal 表 2 扫描伏安曲线测量结果
Table 2. Scanning voltammetry curve measurement results
Scanning speed/(mm·min−1) Ecorr / V Icorr / A Corrosion rate/(mm·year−1) Polarization resistance / Ω 100 −0.1957 1.3077×10−6 0.015195 22093 150 −0.1339 5.8413×10−7 0.006788 67556 200 −0.1718 1.6312×10−6 0.018954 16215 300 −0.1683 7.1979×10−7 0.008364 40113 表 3 不同扫描速度激光熔覆层磨痕测量结果
Table 3. Abrasion measurement results of laser cladding layers with different scanning speeds
Scanning speed(mm·min−1) Depth of friction / mm Width of friction/ mm Volume of friction/ mm3 Mass of friction / g 100 0.0311 0.836 0.84742 0.003754 150 0.0382 0.911 0.70763 0.003135 200 0.0251 0.567 0.38624 0.001711 300 0.3935 0.985 0.91691 0.004062 (Substrate) 0.0446 1.146 1.00278 0.004442 -
[1] 谭金花,孙荣禄,牛伟,等. TC4合金激光熔覆材料的研究现状[J]. 材料导报,2020,34(15):15132-15137. doi: 10.11896/cldb.19050077TAN J H,SUN R L,N W,et al. Research status of TC4 alloy laser cladding materials[J]. Materials Guide,2020,34(15):15132-15137. doi: 10.11896/cldb.19050077 [2] ZHANG L C,CHEN L Y,WANG L Q. Surface modification of titanium and titanium alloys: technologies, developments, and future interests[J]. Advanced Engineering Materials,2020(5):22,1901258. [3] 张德强,刘贤德,李金华. TC4钛合金单道激光熔覆的工艺研究[J]. 机械设计与制造,2016(2):87-90. doi: 10.3969/j.issn.1001-3997.2016.02.023ZHANG D Q,LIU X D,LI J H. Technology research on single-pass laser cladding of TC4 titanium alloy[J]. Machinery Design and Manufacturing,2016(2):87-90. doi: 10.3969/j.issn.1001-3997.2016.02.023 [4] 张蕾涛,刘德鑫,张伟樯,等. 钛合金表面激光熔覆涂层的研究进展[J]. 表面技术,2020,49(8):97-104. doi: 10.16490/j.cnki.issn.1001-3660.2020.08.011ZHANG L T,LIU D X,ZHANG W Y,et al. Research progress of laser cladding coating on titanium alloy surface[J]. Surface Technology,2020,49(8):97-104. doi: 10.16490/j.cnki.issn.1001-3660.2020.08.011 [5] 夏思海,武美萍,马毅青,等. TiC含量对TC4合金激光熔覆层组织和性能的影响[J]. 金属热处理,2020,45(6):212-215. doi: 10.13251/j.issn.0254-6051.2020.06.044XIA S H,WU M P,MA Y Q,et al. The effect of TiC content on the microstructure and properties of TC4 alloy laser cladding layer[J]. Heat Treatment of Metals,2020,45(6):212-215. doi: 10.13251/j.issn.0254-6051.2020.06.044 [6] QI C Q,ZHAN X H,GAO Q Y,et al. The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding[J]. Optics and Laser Technology,2019:119. [7] 刘亚楠,孙荣禄,牛伟,等. 扫描速度对Ti811合金激光熔覆涂层组织与性能的影响[J]. 表面技术,2018,47(12):134-141. doi: 10.16490/j.cnki.issn.1001-3660.2018.12.019LIU Y N,SUN R L,NIU W,et al. Effect of scanning speed on microstructures and properties of Ti811 alloy laser cladding coatings[J]. Surface Technology,2018,47(12):134-141. doi: 10.16490/j.cnki.issn.1001-3660.2018.12.019 [8] ZHANG D,CUI X F,JIN G,et al. Microstructure and tribological performance of laser-cladded Ni60+ h -BN coatings on Ti-6Al-4V alloy at high temperature[J]. Tribology Transactions,2019,62(5):779-788. doi: 10.1080/10402004.2019.1617916 [9] 谭金花,孙荣禄,牛伟,等. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报,2020,34(12):12094-12100. doi: 10.11896/cldb.19050016TAN J H,SUN R L,NIU W,et al. The effect of laser scanning speed on the structure and properties of laser cladding composite coating on TC4 alloy surface[J]. Materials Review,2020,34(12):12094-12100. doi: 10.11896/cldb.19050016 [10] RASHID R A R,BARR C J,PALANISAMY S,et al. Effect of clad orientation on the mechanical properties of laser-clad repaired ultra-high strength 300 M steel[J]. Surface & Coatings Technology,2019(380)-125090. [11] 于童. Ti-6Al-4V激光熔覆制备耐磨复合涂层[D]. 济南: 山东大学, 2018.YU T. Wear-resistant composite coating prepared by Ti-6Al-4V laser cladding[D]. Jinan: Shandong University, 2018. [12] 邱莹,张凤英,胡腾腾,等. 激光功率对TC4表面熔覆Ti40阻燃钛合金组织及硬度的影响[J]. 中国激光,2019,46(11):167-175.QIU Y,ZHANG F Y,HU T T,et al. Effect of laser power on microstructure and hardness of Ti40 flame-retardant titanium alloy cladding on TC4 surface[J]. China Laser,2019,46(11):167-175. [13] 霍浩,梁朝阳,张安峰,等. 激光熔覆沉积含硼TC4钛合金力学性能的各向异性[J]. 中国激光,2019,46(12):117-124.HUO H,LIANG C Y,ZHANG A F,et al. Anisotropy of mechanical properties of boron-containing TC4 titanium alloy deposited by laser cladding[J]. China Laser,2019,46(12):117-124. [14] 邹海贝. TC4钛合金热处理强化工艺及相变行为研究[D]. 秦皇岛: 燕山大学, 2019.ZOU H B. Research on heat treatment strengthening process and phase transformation behavior of TC4 titanium alloy[D]. Qinhuangdao: Yanshan University, 2019. [15] 孙峰. Ti60钛合金相变动力学及组织演变研究[D]. 西安: 西北工业大学, 2015.SUN F. Study on phase transformation kinetics and microstructure evolution of Ti60 titanium alloy[D]. Xi’an: Northwestern Polytechnical University, 2015. [16] 徐铁伟. 高强TB8钛合金相变行为与组织控制研究[D]. 西安: 西北工业大学, 2016.XU T W. Study on phase transformation behavior and microstructure control of high-strength TB8 titanium alloy[D]. Xi’an: Northwestern Polytechnical University, 2016. [17] 郑江鹏,初铭强,张书彦. 铸铁材料激光熔覆修复表面强化技术研究进展[J]. 热加工工艺,2020,49(17):1-6. doi: 10.14158/j.cnki.1001-3814.20192499ZHENG J P,CHU M Q,ZHANG S Y. Research progress of laser cladding repairing surface strengthening technology for cast iron materials[J]. Hot Working Technology,2020,49(17):1-6. doi: 10.14158/j.cnki.1001-3814.20192499 [18] FENG X T,LEI J B,GU H,et al. Effect of scanning speeds on electrochemical corrosion resistance of laser cladding TC4 alloy[J]. Chinese Physics B,2019,28(2):383-390. [19] 冯晓甜,顾宏,周圣丰,等. 送粉式激光增材制造TC4钛合金熔覆层组织及电化学腐蚀行为的研究[J]. 中国激光,2019,46(3):44-53.FENG X T,GU H,ZHOU S F,et al. Study on microstructure and electrochemical corrosion behavior of TC4 titanium alloy cladding layer by powder feeding laser additive manufacturing[J]. China Laser,2019,46(3):44-53. [20] 田蒙蒙,孙凯,廖娟,等. 热处理对钛铝复合板共挤压界面结合特性的影响[J]. 材料热处理学报,2021,42(9):22-28. doi: 10.13289/j.issn.1009-6264.2021-0147TIAN M M,SUN K,LIAO J,et al. Effect of heat treatment on the interfacial bonding characteristics of co-extruded titanium-aluminum composite plates[J]. Journal of Materials Heat Treatment,2021,42(9):22-28. doi: 10.13289/j.issn.1009-6264.2021-0147 [21] CHEN Y,WANG H M. Growth morphology and mechanism of primary TiC carbide in laser clad TiC/FeAl composite coating[J]. Materials Letters,2003,57(5):1233-1238. [22] 韩杰阁. 激光合金化制备TC4钛合金抗高温氧化及耐磨复合涂层性能研究[D]. 武汉: 华中科技大学, 2017.HAN J G. Study on the properties of high temperature oxidation and wear resistance composite coating of TC4 titanium alloy prepared by laser alloying[D]. Wuhan: Huazhong University of Science and Technology, 2017. -