High temperature oxidation behavior of DD406 SX superalloy film cooling holes with different laser drilling processes
-
摘要: 长寿命民机及地面燃气轮机涡轮叶片在工作过程中长期受到高温氧化的影响,使其在复杂工况下表面强度大幅度降低,服役寿命明显缩短,因此高温抗氧化性能是涡轮叶片应用中必须考虑的重要性能指标。本课题研究毫秒和皮秒激光加工工艺下DD406镍基单晶高温合金气膜孔结构在980 ℃和1100 ℃下的高温氧化行为,得到相应定量氧化动力学以及氧化物微观组织结构演化规律,揭示不同制孔工艺下气膜孔结构的氧化机理差异,为服役工况下叶片强度寿命模型的建立提供基础。结果表明:毫秒工艺下的气膜孔结构氧化速率显著高于皮秒工艺,不同工艺的氧化动力学曲线均遵循抛物线或直线规律;毫秒工艺下,氧化初期外层快速生成(Ni, Co)O,此阶段反应速率主要由NiO的生长过程控制,之后形成典型(Ni, Co)O-尖晶石相层-α-Al2O3典型三层结构;内α-Al2O3层下方及γ'相消失层存在较多孔洞,导致氧化层易剥落;皮秒工艺下,氧化初期快速生成不连续α-Al2O3,随后相互连接,形成连续致密α-Al2O3层。
-
关键词:
- DD406单晶高温合金 /
- 涡轮叶片气膜孔 /
- 激光打孔 /
- 氧化动力学 /
- 氧化机理
Abstract: Turbine blades of long-life civil aircraft and gas turbines are affected by high temperature oxidation during service, which greatly reduces the surface strength under complex working conditions and significantly shortens the service life. Therefore, oxidation resistance is one of the most specific properties that must be considered in the application of turbine blades. The influence of the different drilling processes for cooling holes on the oxidation behavior of Ni-based SX (single-crystal) superalloy at 980℃ and 1100 ℃ was investigated. The difference in the oxidation mechanism of the cooling holes under different drilling processes provided a basis for the establishment of the blade life model under service conditions. The results indicate that the film cooling holes processed by millisecond laser exhibit poor oxidation performance, and all oxidation kinetic curves basically obey the parabolic or linear law. In the initial oxidation stage of the millisecond laser specimen, the oxidation reaction is primarily determined by the growth pattern of outer NiO. Subsequently, a three-layer oxide layer((Ni, Co)O-Spinel phase layer-α-Al2O3) gradually formed around the hole. There are relatively micro-holes under the internal α-Al2O3 layer and the γ'-free zone, which makes the oxide layer easy to exfoliate. Discontinuous α-Al2O3 is rapidly formed in the initial oxidation stage of the picosecond laser specimen, and then connected to each other to form the dense α-Al2O3 layer. -
图 3 镍基单晶气膜孔孔周氧化物XRD检测结果 (a)1100 ℃;(b)980 ℃[a-(Ni, Co)O,b-Al2O3,c-NiTa2O6/TaO2,d-CoCo2O4/Co3O4,e-NiAl2O4,f-NiCr2O4,g-CoWO4,h- γ相,i-再铸层]
Figure 3. XRD plots of the peaks observed for (a)1100 ℃ ;(b)980 ℃ [a-(Ni, Co)O,b-Al2O3,c-NiTa2O6/TaO2,d-CoCo2O4/Co3O4,e-NiAl2O4,f-NiCr2O4,g-CoWO4,h- γ phase,i- recast layer]
图 5 980 ℃下镍基单晶气膜孔孔周氧化层微观形貌 (a)毫秒工艺正常区域;(b)毫秒工艺特定区域;(c)皮秒工艺正常区域;(d)皮秒工艺特定区域;(1)氧化10 h;(2)氧化100 h;(3)氧化400 h
Figure 5. Microstructure around the hole after oxidation at 980 °C (a)millisecond processing normal area;(b)millisecond processing specific area;(c)picosecond processing normal area;(d)picosecond processing specific area;(1)oxidation for 10 h;(2)oxidation for 100 h;(3)oxidation for 400 h
图 6 1100 ℃下镍基单晶气膜孔孔周氧化层微观形貌 (a)毫秒工艺正常区域;(b)毫秒工艺特定区域;(c)皮秒工艺正常区域;(d)皮秒工艺特定区域;(1)氧化10 h;(2)氧化100 h;(3)氧化400 h
Figure 6. Microstructure around the hole after oxidation at 1100 ℃ (a)millisecond processing normal area;(b)millisecond processing specific area;(c)picosecond processing normal area;(d)picosecond processing specific area;(1)oxidation for 10 h;(2)oxidation for 100 h;(3)oxidation for 400 h
图 9 不同温度下毫秒和皮秒工艺下孔周的动力学曲线 (a)气膜孔孔周外氧化层氧化动力学规律;(b)孔周γ'相消失层氧化动力学规律; (1)980 ℃;(2)1100 ℃
Figure 9. Oxidation kinetics of hole circumference under millisecond and picosecond processes at different temperatures (a)oxidation kinetics of oxide layer around the hole ; (b)oxidation kinetics of γ' free layer around the hole;(1)980 ℃;(2)1100 ℃
表 1 镍基单晶合金名义化学成分(质量分数/%)
Table 1. Nominal composition of the tested Ni-based SX superalloy(mass fraction/%)
C Cr Co W Mo Al Ti Ta Re Nb B Si Hf Ni 0.015 4.0 9.0 8.0 2.0 5.7 ≤0.10 7.0 2.2 1.0 ≤0.02 ≤0.20 1.0 Bal 表 2 镍基单晶气膜孔不同制孔工艺下外氧化层的氧化动力学方程
Table 2. Oxidation kinetic equation of the oxide layer around the hole under different condition
Laser processing mode Temperature /℃ Oxidation kinetic equation Isothermal rate constant Stage Ⅰ Stage Ⅱ Kp K Millisecond laser 980 Δh2= 0.07098t+1.08880 Δh= 0.04307t-4.785830 0.07098 0.04307 1100 Δh2= 0.13054t+1.60785 Δh= 0.14404t-23.58533 0.13054 0.14404 Picosecond laser 980 Δh2= 0.08042t+1.76822 — 0.08042 — 1100 Δh2= 0.134t+2.1788700 — 0.13400 — 表 3 镍基单晶气膜孔不同制孔工艺γ'相消失层的氧化动力学方程
Table 3. Oxidation kinetic equation of the γ' free layer around the hole under different condition
Laser processing mode Temperature /℃ Oxidation kinetic equation Isothermal rate constant Stage Ⅰ Stage Ⅱ Kp K Millisecond laser 980 Δh2= 0.18826t+0.35141 Δh= 0.01082t+3.53542 0.18826 0.01082 1100 Δh2= 0.19253t+1.37038 Δh= 0.02006t+3.05400 0.19253 0.02006 Picosecond laser 980 Δh2= 0.07002t+0.63235 — 0.07002 — 1100 Δh2= 0.1553t+1.153360 Δh= 0.01018t+3.68792 0.15530 0.01018 -
[1] 胡壮麒,刘丽荣,金涛,等. 镍基单晶高温合金的发展[J]. 航空发动机,2005,31(3):1-7. doi: 10.3969/j.issn.1672-3147.2005.03.001HU Z Q,LIU L R,JIN T,et al. Development of Ni-base single crystal superalloys[J]. Aeroengine,2005,31(3):1-7. doi: 10.3969/j.issn.1672-3147.2005.03.001 [2] 金涛,周亦胄,王新广,等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报,2015,51(10):1153-1162.JIN T,ZHOU Y Z,WANG X G,et al. Research progress on microstructure stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metallurgica Sinica,2015,51(10):1153-1162. [3] 郭文,王鹏飞. 涡轮叶片冷却技术分析[J]. 航空动力,2020(6):55-58.GUO W,WANG P F. Analysis of cooling configurations for turbine blade[J]. Aerospace Power,2020(6):55-58. [4] 蒋其麟,曹凯强,陈龙,等. 涡轮叶片气膜孔的纳秒-飞秒双波段激光加工[J]. 航空制造技术,2021,64(18):53-61.JIANG Q L,CAO K Q,CHEN L,et al. Process of turbine blade film cooling holes by nanosecond and femtosecond laser pulses[J]. Aeronautical Manufacturing Technology,2021,64(18):53-61. [5] 纪亮,张晓兵,张伟,等. DD6镍基单晶合金的纳秒及皮秒激光烧蚀和制孔研究[J]. 应用激光,2014,34(6):551-556. doi: 10.3788/AL20143406.551JI L,ZHANG X B,ZHANG W,et al. Laser-Induced ablation and laser drilling of DD6 nickel-based single-crystal alloy by nanosecond and picosecond lasers[J]. Applied laser,2014,34(6):551-556. doi: 10.3788/AL20143406.551 [6] 张健. 飞秒激光超微细加工及应用研究[D]. 天津: 南开大学, 2009.ZHANG J. Femtosecond laser ultra micro machining and its application[D]. Tianjin: Nankai University, 2009. [7] 杨海峰. 飞秒激光微纳加工技术与应用研究[D]. 镇江: 江苏大学, 2007.YANG H F. Research on femtosecond laser micro nano machining technology and application[D]. Zhenjiang: Jiangsu University, 2007. [8] HU Y B,CHENG C Q,CAO T S,et al. A study on the multiple stages of oxidation kinetics in a single crystal nickel-based superalloy[J]. Corrosion Science,2021,188:109512. doi: 10.1016/j.corsci.2021.109512 [9] SHI Z X,LI J R,LIU S Z. Isothermal oxidation behavior of single crystal superalloy DD6[J]. Transactions of Nonferrous Metals Society of China,2012,22(3):534-538. doi: 10.1016/S1003-6326(11)61210-7 [10] PEI H Q,WEN Z X,ZHANG Y M,et al. Oxidation behavior and mechanism of a Ni-based single crystal superalloy with single α-Al2O3 film at 1000 °C[J]. Applied Surface Science,2017,411:124-135. doi: 10.1016/j.apsusc.2017.03.116 [11] ZHUANG X,TAN Y,YOU X,et al. High temperature oxidation behavior and mechanism of a new Ni-Co-based superalloy[J]. Vacuum,2021(3):110219. [12] NEIL B, MEIER G H, PETTIT F S , 等. 金属高温氧化导论[M]. 北京: 高等教育出版社, 2010.NEIL B, MEIER G H, PETTIT F S, et al. Introduction to the high-temperature oxidation of metals[M]. Beijing: Higher Education Press, 2010. [13] BENSCH M,PREUßNER J,HÜTTNER R,et al. Modelling and analysis of the oxidation influence on creep behaviour of thin-walled structures of the single-crystal nickel-base superalloy René N5 at 980 °C[J]. Acta Materialia,2010,58(5):1607-1617. doi: 10.1016/j.actamat.2009.11.004 [14] MALLIKARJUNA H T,CALEY W F,RICHARDS L. The dependence of oxidation resistance on gamma prime intermetallic size for superalloy IN738LC[J]. Corrosion Science,2019,147:394-405. doi: 10.1016/j.corsci.2018.12.002 [15] TAN Z H,WANG X G,SONG W,et al. Oxidation behavior of a novel nickel-based single crystal superalloy at elevated temperature[J]. Vacuum,2020,175:109284. doi: 10.1016/j.vacuum.2020.109284 [16] PEI H,WEN Z,LI Z,et al. Influence of surface roughness on the oxidation behavior of a Ni-4.0Cr-5.7Al single crystal superalloy[J]. Applied Surface Science,2018,440:790-803. doi: 10.1016/j.apsusc.2018.01.226 [17] 田素贵,张禄廷,杨洪才,等. 镍基单晶合金高温氧化的动力学特征[J]. 材料研究学报,2002,16(2):183-187. doi: 10.3321/j.issn:1005-3093.2002.02.014TIAN S G,ZHANG L T,YANG H C,et al. Kinetic features of high temperature oxidation of a single crystal Ni-base superalloy[J]. Chinese Journal of Materials Research,2002,16(2):183-187. doi: 10.3321/j.issn:1005-3093.2002.02.014 [18] 卢旭东,田素贵,孙振东. 高Cr镍基单晶合金1050 ℃的高温氧化性能[J]. 铸造,2011,60(2):175-179.LU X D,TIAN S G,SUN Z D. Oxidation behaviour of a high Cr single-crystal Ni-base superalloy at 1050 ℃[J]. China Foundry,2011,60(2):175-179. [19] PÉREZ-GONZÁLEZ F A,RAMÍREZ-RAMÍREZ J H,TEROCK M,et al. High-temperature oxidation of a nickel base superalloy at different oxygen partial pressures[J]. Corrosion Engineering Science and Technology,2016,51(7):1-9. [20] ATHREYA C N,DEEPAK K,DONG-IK K,et al. Role of grain boundary engineered microstructure on high temperature steam oxidation behaviour of Ni based superalloy alloy 617[J]. Journal of Alloys and Compounds,2019,778:224-233. doi: 10.1016/j.jallcom.2018.11.137 [21] 郭建亭. 高温合金材料学[M]. 北京: 科学出版社, 2010.GUO J T. Materials science of superalloys[M]. Beijing: Science Press, 2010. [22] PEI J,LI Y,LI C,et al. Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys[J]. Journal of Materials Science and Technology,2020,52:162-171. doi: 10.1016/j.jmst.2020.04.006 -