锂硫电池回顾与最新发展

燕绍九 杨晓辰 王超君 陈翔 刘佳让 南文争 刘津

燕绍九, 杨晓辰, 王超君, 陈翔, 刘佳让, 南文争, 刘津. 锂硫电池回顾与最新发展[J]. 航空材料学报, 2022, 42(5): 32-51. doi: 10.11868/j.issn.1005-5053.2022.000024
引用本文: 燕绍九, 杨晓辰, 王超君, 陈翔, 刘佳让, 南文争, 刘津. 锂硫电池回顾与最新发展[J]. 航空材料学报, 2022, 42(5): 32-51. doi: 10.11868/j.issn.1005-5053.2022.000024
YAN Shaojiu, YANG Xiaochen, WANG Chaojun, CHEN Xiang, LIU Jiarang, NAN Wenzheng, LIU Jin. Review and recent development of lithium-sulfur batteries[J]. Journal of Aeronautical Materials, 2022, 42(5): 32-51. doi: 10.11868/j.issn.1005-5053.2022.000024
Citation: YAN Shaojiu, YANG Xiaochen, WANG Chaojun, CHEN Xiang, LIU Jiarang, NAN Wenzheng, LIU Jin. Review and recent development of lithium-sulfur batteries[J]. Journal of Aeronautical Materials, 2022, 42(5): 32-51. doi: 10.11868/j.issn.1005-5053.2022.000024

锂硫电池回顾与最新发展

doi: 10.11868/j.issn.1005-5053.2022.000024
详细信息
    通讯作者:

    燕绍九(1980—),男,博士,研究员,长期从事低维纳米材料制备及应用研究,主要致力于石墨烯储能材料、石墨烯增强金属基纳米材料研究,联系地址:北京市海淀区温泉镇环山村中国航发北京航空材料研究院(100095),E-mail:shaojiuyan@126.com

  • 中图分类号: TM911.1

Review and recent development of lithium-sulfur batteries

  • 摘要: 锂硫电池具有比容量高、生产成本低及环境友好等特点,是一种高能量密度的储能系统,在便携式电子设备储能中有巨大的发展潜力与应用前景。然而,锂硫电池在实际应用中仍面临着库仑效率低和寿命短等问题。这主要归因于多硫化物穿梭效应、S8和Li2S电导率低和锂枝晶生长不可控。抑制锂枝晶生长和阻止可溶性多硫化物与锂之间的反应不仅能增强锂硫电池的安全性和电化学性能,对高容量锂硫电池也至关重要。本文全面回顾了锂硫电池发展,着重介绍了高硫负载锂电池所取得的进展。通过分析机理了解锂硫电池的运作机制进而制定改进方式,包括对阴极使用分级多孔碳并进行元素掺杂以增加活性物质硫负载率,减少多硫化物的穿梭效应。还介绍了液态和固态电解液系统的发展以及增强阳极稳定性的各种策略。深入了解锂硫电池机理能加强对锂硫电池认知,可以指导高硫负载锂硫电池未来的发展。同时,提高各组件之间协同作用可进一步推动锂硫电池技术从纽扣电池和软包电池到随后的商业化规模应用。

     

  • 图  1  锂硫电池工作机理[11]  (a) 电池的充放电过程中电压和电池容量的函数;(b) 基于XANES在充放电过程中推导出的锂硫电池机制

    Figure  1.  Working mechanism of lithium-sulfur battery[11] (a) function of voltage and battery capacity during charge and discharge;(b) mechanism of lithium-sulfur battery deduced by XANES during charge and discharge

    图  2  基于四甲基脲(TMU)电解质的锂硫电池[14] (a)溶剂化介导的自由基路径;(b)多硫化物解聚过程及方程

    Figure  2.  Lithium sulfur batteries based on tetramethyl urea (TMU) electrolyte[14] (a) solvation mediated free radical pathway; (b) process and equation of polysulfide depolymerization

    图  3  制备分级多孔碳纳米片示意图[30]

    Figure  3.  Schematic diagram of the preparation of hierarchical porous carbon nanosheets[30]

    图  4  氧化石墨烯-硫-支链淀粉复合材料合成路线示意图[35]

    Figure  4.  Schematic diagram of GO-sulfur-amylopectin composite synthesis route[35]

    图  5  吸附硫的俯视图[23] (a) 吸附在带有吡啶 N—COOH 官能团的氮掺杂碳上;(b) 吸附在带有—COOH 基团的无氮碳上

    Figure  5.  Top view of adsorbed sulfur[23] (a) adsorbed on nitrogen-doped carbon with pyridine N—COOH functional group; (b) adsorbed on nitrogen-free carbon with —COOH group

    图  6  N,S-CDs/rGO 和 N,S-CDs/rGO@S 复合材料的制备示意图[55]

    Figure  6.  Schematic diagram of preparation of N, S-CDS /rGO and N, S-CDS /rGO@S composites[55]

    图  7  基于 DFT 计算的Li2S6物质在CoSA-NC上吸附的原子构象和结合能[58]

    Figure  7.  Atomic conformation and binding energy of Li2S6 adsorbed on CoSA-NC based on DFT calculation [58]

    图  8  Li2S6在典型醚溶剂中的溶解实验照片[66]

    Figure  8.  Dissolution test photos of Li2S6 in typical ether solvents[66]

    图  9  Li10GeP2S12以及其他锂固态电解液、聚合物电解液、离子电解液和凝胶电解液的离子电导率的热演化[90]

    Figure  9.  Thermal evolution of ionic conductivity of Li10GeP2S12 and other Lithium solid, polymer, ionic liquid and gel electrolytes[90]

    图  10  纯锂和Cu3N+丁苯橡胶人工SEI镀层行为示意图[109]

    Figure  10.  Diagram of artificial SEI coating behavior of pure lithium and Cu3N+ SBR[109]

    表  1  碳质材料掺杂氮元素制备的锂硫电池性能[39]

    Table  1.   Performance of lithium-sulfur battery prepared by carbon material doped with nitrogen element[39]

    MaterialDoping elementElement contentSulphur content
    (mass fraction/%)
    Initial discharge
    capacity/(mAh·g−1
    Cycle indexCapacity retention rate/%
    N-IOPN3.0 a80 a1162(0.2 C)15064
    NPCMsN8.9 a65 a1132(0.1 A/g)10091
    HNCMN12.43 b6 c902(0.5 C)100089
    N-CNTN61 a1267(0.2 C)10064
    NGN3.9 a60 a1030(0.5 C)30073
    3DG@NPCN18 a70 a1280(0.2 C)10081
    Note: a represents mass fraction/%; b represents atom fraction/%; c represents mg/cm2.
    下载: 导出CSV

    表  2  碳质材料进行二元掺杂制备的锂硫电池性能[48]

    Table  2.   Performance of lithium-sulfur batteries prepared by binary doping of carbonaceous material[48]

    MaterialDoping elementElement contentSulphur contentInitial discharge capacity/(mAh·g-1Cycle indexCapacity retention rate/%
    NSHPCN, SN 3.47 a
    S 4.03 a
    80 a1549(0.1 C)10061.14
    SN-PCNFN, S-80 a1133(0.1 C)15075
    N,S-CDs/
    rGO
    N, SN 2.9 a
    S 3.8 a
    76 a1296(0.1 C)15069
    Co-N-CNTAN, CoN 8.6 b40 a1045(1C)100077.89
    CoSA-N-CN, CoN 16.3 b74 a1038(1 C)100065
    Co-N/GN, CoN 7.25 b
    Co 0.77 b
    67 a861(1 C)50079
    Note: a represents mass fraction,%; b represents atom fraction,%.
    下载: 导出CSV
  • [1] CHENG J,LIU L,OU S,et al. Sulfur/Cu xS hybrid material for Li/S primary battery with improved discharge capacity[J]. Materials Chemistry and Physics,2019,224:384-388. doi: 10.1016/j.matchemphys.2018.12.047
    [2] 王超君,陈翔,彭思侃,等. 锂离子电池发展现状及其在航空领域的应用分析[J]. 航空材料学报,2021,41(3):83-95. doi: 10.11868/j.issn.1005-5053.2021.000046

    WANG C J,CHEN X,PENG S K,et al. Recent advances in lithium-ion batteries and their applications towards aerospace[J]. Journal of Aeronautical Materials,2021,41(3):83-95. doi: 10.11868/j.issn.1005-5053.2021.000046
    [3] DANUTA H, JULIUSZ U. Electric dry cells and storage batteries[Z]. Google Patents. 1962
    [4] JI X,LEE K T,NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials,2009,8(6):500-506. doi: 10.1038/nmat2460
    [5] TONG Z,HUANG L,GUO J,et al. Simultaneously achieving fast sulfur redox kinetics and high-loading in lithium-sulfur batteries[J]. Carbon,2022,187:451-461. doi: 10.1016/j.carbon.2021.11.031
    [6] ZHANG B,WU J,GU J,et al. The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium-sulfur batteries[J]. ACS Energy Letters,2021,6(2):537-546. doi: 10.1021/acsenergylett.0c02527
    [7] LI L B,SHAN Y H. The use of graphene and its composites to suppress the shuttle effect in lithium-sulfur batteries[J]. New Carbon Materials,2021,36(2):336-349. doi: 10.1016/S1872-5805(21)60023-9
    [8] FENG S,FU Z H,CHEN X,et al. A review on theoretical models for lithium-sulfur battery cathodes[J]. InfoMat,2022,4(3):12304.
    [9] ZHENG D,ZHANG X,WANG J,et al. Reduction mechanism of sulfur in lithium-sulfur battery: from elemental sulfur to polysulfide[J]. Journal of Power Sources,2016,301:312-316. doi: 10.1016/j.jpowsour.2015.10.002
    [10] HOEFLING A,NGUYEN D T,PARTOVI A P,et al. Mechanism for the stable performance of sulfur-copolymer cathode in lithium sulfur battery studied by solid-state NMR spectroscopy[J]. Chemistry of Materials,2018,30(9):2915-2923. doi: 10.1021/acs.chemmater.7b05105
    [11] PENG H J,HUANG J Q,CHENG X B,et al. Review on high-loading and high-energy lithium-sulfur batteries [J]. Advanced Energy Materials,2017,7(24):1700260. doi: 10.1002/aenm.201700260
    [12] WU X,YU W,WEN K,et al. Strategies to suppress the shuttle effect of redox mediators in lithium-oxygen batteries[J]. Journal of Energy Chemistry,2021,60:135-149. doi: 10.1016/j.jechem.2020.12.034
    [13] SCHWENKE K U,MEINI S,WU X,et al. Stability of superoxide radicals in glyme solvents for non-aqueous Li-O2 battery electrolytes[J]. Physical Chemistry Chemical Physics,2013,15(28):11830-11839. doi: 10.1039/c3cp51531a
    [14] ZHANG G,PENG H J,ZHAO C Z,et al. The adical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries[J]. Angewandte Chemie,2018,130(51):16974-16978. doi: 10.1002/ange.201810132
    [15] GRIEBEL J J,LI G,GLASS R S,et al. Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li-S batteries[J]. Journal of Polymer Science Part A,2015,53(2):173-177. doi: 10.1002/pola.27314
    [16] ALMEIDA C,COSTA H,KADHIRVEL P,et al. Electrochemical activity of sulfur networks synthesized through RAFT polymerization[J]. Journal of Applied Polymer Science,2016,133(39):1-11.
    [17] WEI Z,REN Y,SOKOLOWSKI J,et al. Mechanistic understanding of the role separators playing in advanced lithium‐sulfur batteries[J]. InfoMat,2020,2(3):483-508. doi: 10.1002/inf2.12097
    [18] HU Y,CHEN W,LEI T,et al. Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery[J]. Nano Energy,2020,68:104373. doi: 10.1016/j.nanoen.2019.104373
    [19] ZHANG J,RAO Q,JIN B,et al. Cerium oxide embedded bilayer separator enabling fast polysulfide conversion for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal,2020,388:124120. doi: 10.1016/j.cej.2020.124120
    [20] TIAN J,XIONG R,SHEN W,et al. Electrode ageing estimation and open circuit voltage reconstruction for lithium ion batteries[J]. Energy Storage Materials,2021,37:283-295. doi: 10.1016/j.ensm.2021.02.018
    [21] KNAP V,STROE D I. Effects of open-circuit voltage tests and models on state-of-charge estimation for batteries in highly variable temperature environments: Study case nano-satellites[J]. Journal of Power Sources,2021,498:229913. doi: 10.1016/j.jpowsour.2021.229913
    [22] HU Y,CHEN W,LEI T,et al. Strategies toward high‐loading lithium-sulfur battery[J]. Advanced Energy Materials,2020,10(17):2000082. doi: 10.1002/aenm.202000082
    [23] SONG J,XU T,GORDIN M L,et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium‐sulfur batteries[J]. Advanced Functional Materials,2014,24(9):1243-1250. doi: 10.1002/adfm.201302631
    [24] LIU K,ZHAO H,YE D,et al. Recent progress in organic Polymers-Composited sulfur materials as cathodes for Lithium-Sulfur battery[J]. Chemical Engineering Journal,2021,417:129309. doi: 10.1016/j.cej.2021.129309
    [25] YAO S,ZHANG C,GUO R,et al. CoS2-decorated cobalt/nitrogen Co-doped carbon nanofiber networks as dual functional electrocatalysts for enhancing electrochemical redox kinetics in lithium-sulfur batteries[J]. ACS Sustainable Chemistry& Engineering,2020,8(36):13600-13609.
    [26] PARK J H,CHOI W Y,YANG J,et al. Nitrogen-rich hierarchical porous carbon paper for a free-standing cathode of lithium sulfur battery[J]. Carbon,2021,172:624-636. doi: 10.1016/j.carbon.2020.10.078
    [27] GUEON D,HWANG J T,YANG S B,et al. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes[J]. ACS Nano,2018,12(1):226-233. doi: 10.1021/acsnano.7b05869
    [28] XIE J,LI B Q,PENG H J,et al. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries[J]. Advanced Materials,2019,31(43):1903813. doi: 10.1002/adma.201903813
    [29] ZANG Y,PEI F,HUANG J,et al. Large‐area preparation of crack‐free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries [J]. Advanced Energy Materials,2018,8(31):1802052. doi: 10.1002/aenm.201802052
    [30] DU Y,HUANG R,LIN X,et al. Template-free preparation of hierarchical porous carbon nanosheets for lithium-sulfur battery[J]. Langmuir,2020,36(48):14507-14513. doi: 10.1021/acs.langmuir.0c02167
    [31] LIU S,XIE K,CHEN Z,et al. A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2015,3(21):11395-11402. doi: 10.1039/C5TA00897B
    [32] KIM J H,KIM T,JEONG Y C,et al. Stabilization of insoluble discharge products by facile aniline modification for high performance Li‐S batteries[J]. Advanced Energy Materials,2015,5(14):1500268. doi: 10.1002/aenm.201500268
    [33] DING B,YUAN C,SHEN L,et al. Encapsulating sulfur into hierarchically ordered porous carbon as a high‐performance cathode for lithium-sulfur batteries[J]. Chemistry-A European Journal,2013,19(3):1013-1019. doi: 10.1002/chem.201202127
    [34] CHEN F,YANG J,BAI T,et al. Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium-sulfur batteries[J]. Electrochimica Acta,2016,192:99-109. doi: 10.1016/j.electacta.2016.01.192
    [35] ZHOU W,CHEN H,YU Y,et al. Amylopectin wrapped graphene oxide/sulfur for improved cyclability of lithium-sulfur battery[J]. ACS Nano,2013,7(10):8801-8808. doi: 10.1021/nn403237b
    [36] HOU T Z,CHEN X,PENG H J,et al. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small,2016,12(24):3283-3291. doi: 10.1002/smll.201600809
    [37] SHINDE P,ROUT C S. Advances in synthesis, properties and emerging applications of tin sulfides and its heterostructures[J]. Materials Chemistry Frontiers,2021,5(2):516-556. doi: 10.1039/D0QM00470G
    [38] ZHAO Y,WU D,CHEN Y,et al. Thermal removal of partial nitrogen atoms in N-doped graphene for enhanced catalytic oxidation[J]. Journal of Colloid and Interface Science,2021,585:640-648. doi: 10.1016/j.jcis.2020.10.043
    [39] YUN L,HONGJUAN S,YUEFENG S,et al. Application of element-doped carbonaceous materials in lithium-sulfur batteries[J]. Progress in Chemistry,2021,33(9):1598.
    [40] Van DOMMELE S,ROMERO I A,B R,et al. Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes[J]. Carbon,2008,46(1):138-148. doi: 10.1016/j.carbon.2007.10.034
    [41] WU G,SANTANDREU A,KELLOGG W,et al. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition[J]. Nano Energy,2016,29:83-110. doi: 10.1016/j.nanoen.2015.12.032
    [42] WANG J,YAN X,ZHANG Z,et al. Facile preparation of high‐content N‐doped CNT microspheres for high‐performance lithium storage[J]. Advanced Functional Materials,2019,29(39):1904819. doi: 10.1002/adfm.201904819
    [43] QIU Y,LI W,ZHAO W,et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters,2014,14(8):4821-4827. doi: 10.1021/nl5020475
    [44] HAN P,CHUNG S H,MANTHIRAM A. Pyrrolic-type nitrogen-doped hierarchical macro/mesoporous carbon as a bifunctional host for high-performance thick cathodes for lithium-sulfur batteries[J]. Small,2019,15(16):1900690. doi: 10.1002/smll.201900690
    [45] WANG H F,FAN C Y,LI X Y,et al. Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance[J]. Electrochimica Acta,2017,244:86-95. doi: 10.1016/j.electacta.2017.05.090
    [46] XU C,ZHOU H,FU C,et al. Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high-performance lithium-sulfur batteries[J]. Electrochimica Acta,2017,232:156-163. doi: 10.1016/j.electacta.2017.02.140
    [47] LIU W,LUO C,ZHANG S,et al. Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries[J]. ACS Nano,2021,15(4):7491-7499. doi: 10.1021/acsnano.1c00896
    [48] QU J,LV S,PENG X,et al. Nitrogen-doped porous"green carbon"derived from shrimp shell: Combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery[J]. Journal of Alloys and Compounds,2016,671:17-23. doi: 10.1016/j.jallcom.2016.02.064
    [49] LI S,CHEN X,HU F,et al. Cobalt-embedded carbon nanofiber as electrocatalyst for polysulfide redox reaction in lithium sulfur batteries[J]. Electrochimica Acta,2019,304:11-19. doi: 10.1016/j.electacta.2019.02.087
    [50] LI Q,GUO J,ZHAO J,et al. Porous nitrogen-doped carbon nanofibers assembled with nickel nanoparticles for lithium-sulfur batteries[J]. Nanoscale,2019,11(2):647-655. doi: 10.1039/C8NR07220E
    [51] ZENG S,ARUMUGAM G M,LIU X,et al. Encapsulation of sulfur into N‐doped porous carbon cages by a facile, template-free method for stable lithium-sulfur cathode[J]. Small,2020,16(39):2001027. doi: 10.1002/smll.202001027
    [52] WANG X,HAO Y,WANG G,et al. YF3/CoF3 co-doped 1D carbon nanofibers with dual functions of lithium polysulfudes adsorption and efficient catalytic activity as a cathode for high-performance Li-S batteries[J]. Journal of Colloid and Interface Science,2022,607:922-932. doi: 10.1016/j.jcis.2021.09.079
    [53] LI N,GAN F,WANG P,et al. In situ synthesis of 3D sulfur-doped graphene/sulfur as a cathode material for lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2018,754:64-71. doi: 10.1016/j.jallcom.2018.04.018
    [54] WANG L,YANG Z,NIE H,et al. A lightweight multifunctional interlayer of sulfur-nitrogen dual-doped graphene for ultrafast, long-life lithium-sulfur batteries [J]. Journal of Materials Chemistry A,2016,4(40):15343-15352. doi: 10.1039/C6TA07027B
    [55] CHABU J M,ZENG K,JIN G,et al. Simple approach for the preparation of nitrogen and sulfur co-doped carbon dots/reduced graphene oxide as host for high-rate lithiumsulfur batteries[J]. Materials Chemistry and Physics,2019,229:226-231. doi: 10.1016/j.matchemphys.2019.03.019
    [56] GE W,WANG L,LI C,et al. Conductive cobalt doped niobium nitride porous spheres as an efficient polysulfide convertor for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2020,8(13):6276-6282. doi: 10.1039/D0TA00800A
    [57] HU C,YANG C,YANG J,et al. An entangled cobalt-nitrogen-carbon nanotube array electrode with synergetic confinement and electrocatalysis of polysulfides for stable Li-S batteries[J]. ACS Applied Energy Materials,2019,2(4):2904-2912. doi: 10.1021/acsaem.9b00243
    [58] LI Y,WU J,ZHANG B,et al. Fast conversion and controlled deposition of lithium(poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms[J]. Energy Storage Materials,2020,30:250-259. doi: 10.1016/j.ensm.2020.05.022
    [59] ZHAO S,WANG D W,AMAL R,et al. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage[J]. Advanced Materials,2019,31(9):1801526. doi: 10.1002/adma.201801526
    [60] XIAO Y,ZENG Y,ZENG H,et al. Nitrogen, oxygen and cobalt multiple-doped graphitized mesoporous carbon as a cost-effective carbon host with high sulfur content for lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2019,787:1356-1364. doi: 10.1016/j.jallcom.2019.01.316
    [61] SCHEERS J,FANTINI S,JOHANSSON P. A review of electrolytes for lithium-sulphur batteries[J]. Journal of Power Sources,2014,255:204-218. doi: 10.1016/j.jpowsour.2014.01.023
    [62] BONNICK P,NIITANI K,NOSE M,et al. A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte[J]. Journal of Materials Chemistry A,2019,7(42):24173-24179. doi: 10.1039/C9TA06971B
    [63] MIKHAYLIK Y V,KOVALEV I,SCHOCK R,et al. High energy rechargeable Li-S cells for EV application: status, remaining problems and solutions[J]. ECS Transactions,2010,25(35):23. doi: 10.1149/1.3414001
    [64] WANG W,WANG Y,HUANG Y,et al. The electrochemical performance of lithium-sulfur batteries with LiClO4 DOL/DME electrolyte[J]. Journal of Applied Electrochemistry,2010,40(2):321-325. doi: 10.1007/s10800-009-9978-z
    [65] KIM T J,JEONG B O,KOH J Y,et al. Influence of electrolyte composition on electrochemical performance of Li-S cells[J]. Bulletin of the Korean Chemical Society,2014,35(5):1299-1304. doi: 10.5012/bkcs.2014.35.5.1299
    [66] ZHOU J,GUO Y,LIANG C,et al. A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode[J]. Chemical Communications,2018,54(43):5478-5481. doi: 10.1039/C8CC02552E
    [67] WANG X,TAN Y,SHEN G,et al. Recent progress in fluorinated electrolytes for improving the performance of Li-S batteries[J]. Journal of Energy Chemistry,2020,41:149-170. doi: 10.1016/j.jechem.2019.05.010
    [68] MEISNER Q J,ROJAS T,RAGO N L D,et al. Lithium-sulfur battery with partially fluorinated ether electrolytes: Interplay between capacity, coulombic efficiency and Li anode protection[J]. Journal of Power Sources,2019,438:226939. doi: 10.1016/j.jpowsour.2019.226939
    [69] MA S,ZUO P,ZHANG H,et al. Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for room-temperature sodium/potassium sulfur batteries[J]. Chemical Communications,2019,55(36):5267-5270. doi: 10.1039/C9CC01612K
    [70] WANG L,HE X,LI J,et al. Charge/discharge characteristics of sulfurized polyacrylonitrile composite with different sulfur content in carbonate based electrolyte for lithium batteries[J]. Electrochimica Acta,2012,72:114-119. doi: 10.1016/j.electacta.2012.04.005
    [71] LI Z,YUAN L,YI Z,et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Advanced Energy Materials,2014,4(7):1301473. doi: 10.1002/aenm.201301473
    [72] WAN H,LIU S,DENG T,et al. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery[J]. ACS Energy Letters,2021,6(3):862-868. doi: 10.1021/acsenergylett.0c02617
    [73] 王晨,彭思侃,王楠,等. 聚合物固态电解质在锂硫电池中的应用[J]. 航空材料学报,2019,39(4):65-70. doi: 10.11868/j.issn.1005-5053.2019.000027

    WANG C,PENG S K,WANG N,et al. Application of solid polymer electrolyte in lithium sulfur batteries[J]. Journal of Aeronautical Materials,2019,39(4):65-70. doi: 10.11868/j.issn.1005-5053.2019.000027
    [74] JEON B H,YEON J H,CHUNG I J. Preparation and electrical properties of lithium-sulfur-composite polymer batteries[J]. Journal of Materials Processing Technology,2003,143:93-97.
    [75] TERAN A A,BALSARA N P. Effect of lithium polysulfides on the morphology of block copolymer electrolytes[J]. Macromolecules,2011,44(23):9267-9275. doi: 10.1021/ma202091z
    [76] ZHAI P,PENG N,SUN Z,et al. Thin laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium-sulfur battery[J]. Journal of Materials Chemistry A,2020,8(44):23344-23353. doi: 10.1039/D0TA07630A
    [77] YU X,MANTHIRAM A. A review of composite polymer-ceramic electrolytes for lithium batteries[J]. Energy Storage Materials,2021,34:282-300. doi: 10.1016/j.ensm.2020.10.006
    [78] KIM H M,HWANG J Y,BANG S,et al. Tungsten oxide/zirconia as a functional polysulfide mediator for high-performance lithium-sulfur batteries[J]. ACS Energy Letters,2020,5(10):3168-3175. doi: 10.1021/acsenergylett.0c01511
    [79] HASSOUN J,SCROSATI B. Moving to a solid‐state configuration: a valid approach to making lithium‐sulfur batteries viable for practical applications[J]. Advanced Materials,2010,22(45):5198-5201. doi: 10.1002/adma.201002584
    [80] PONNADA S,KIAI M S,GORLE D B,et al. History and recent developments in divergent electrolytes towards high-efficiency lithium-sulfur batteries—a review[J]. Materials Advances,2021,2(13):4115-4139. doi: 10.1039/D1MA00332A
    [81] QIAN J,JIN B,LI Y,et al. Research progress on gel polymer electrolytes for lithium-sulfur batteries[J]. Journal of Energy Chemistry,2021,56:420-437. doi: 10.1016/j.jechem.2020.08.026
    [82] CHIU L L,CHUNG S H. A poly (ethylene oxide)/lithium bis(trifluoromethanesulfonyl) imide-coated polypropylene membrane for a high-loading lithium-sulfur battery[J]. Polymers,2021,13(4):535. doi: 10.3390/polym13040535
    [83] ZHOU J,JI H,LIU J,et al. A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery[J]. Energy Storage Materials,2019,22:256-264. doi: 10.1016/j.ensm.2019.01.024
    [84] ZHU M,WANG Y,LONG L,et al. An optimal carbon fiber interlayer integrated with bio-based gel polymer electrolyte enabling trapping-diffusion-conversion of polysulfides in lithium-sulfur batteries[J]. Chemical Engineering Journal,2019,370:1068-1076. doi: 10.1016/j.cej.2019.03.245
    [85] ZHANG H,LU H,CHEN J,et al. A novel filler for gel polymer electrolyte with a high lithium-ion transference number toward stable cycling for lithium-metal anodes in lithium-sulfur batteries[J]. ACS Applied Materials& Interfaces,2021,13(41):48622-48633.
    [86] ZENG F L,LI N,SHEN Y Q,et al. Improve the electrodeposition of sulfur and lithium sulfide in lithium-sulfur batteries with a comb-like ion-conductive organo-polysulfide polymer binder[J]. Energy Storage Materials,2019,18:190-198. doi: 10.1016/j.ensm.2018.09.018
    [87] HALIM S I A,CHAN C H,APOTHEKER J. Basics of teaching electrochemical impedance spectroscopy of electrolytes for ion-rechargeable batteries-part 1: a good practice on estimation of bulk resistance of solid polymer electrolytes[J]. Chemistry Teacher International,2021,3(2):105-115. doi: 10.1515/cti-2020-0011
    [88] LI M,FRERICHS J E,KOLEK M,et al. Solid-state lithium-sulfur battery enabled by Thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode[J]. Advanced Functional Materials,2020,30(14):1910123. doi: 10.1002/adfm.201910123
    [89] HAYASHI A,HAMA S,MORIMOTO H,et al. High lithium ion conductivity of glass-ceramics derived from mechanically milled glassy powders[J]. Chemistry Letters,2001,30(9):872-873. doi: 10.1246/cl.2001.872
    [90] KAMAYA N,HOMMA K,YAMAKAWA Y,et al. A lithium superionic conductor[J]. Nature Materials,2011,10(9):682-686. doi: 10.1038/nmat3066
    [91] NAGATA H,CHIKUSA Y. A lithium sulfur battery with high power density[J]. Journal of Power Sources,2014,264:206-210. doi: 10.1016/j.jpowsour.2014.04.106
    [92] WANG S,DING Y,ZHOU G,et al. Durability of the Li1+ x Ti2- x Al x (PO4)3 solid electrolyte in lithium-sulfur batteries[J]. ACS Energy Letters,2016,1(6):1080-1085. doi: 10.1021/acsenergylett.6b00481
    [93] CHEN M,ADAMS S. High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte[J]. Journal of Solid State Electrochemistry,2015,19(3):697-702. doi: 10.1007/s10008-014-2654-1
    [94] GAO B,JALEM R,TATEYAMA Y. First-principles study of microscopic electrochemistry at the LiCoO2 cathode/LiNbO3 coating/β-Li3PS4 solid electrolyte interfaces in an all-solid-state battery[J]. ACS Applied Materials& Interfaces,2021,13(10):11765-11773.
    [95] TRIPATHI B,PATODIA T,JAIN A,et al. Optimization of cycling performance for CNT impregnated sulfur composite cathode using LiBH4 as solid electrolyte for all solid state Li-S batteries[J]. ECS Transactions,2021,104(1):53. doi: 10.1149/10401.0053ecst
    [96] NGUYEN J,FLEUTOT B,JANOT R. Investigation of the stability of metal borohydrides-based compounds LiM(BH4)3Cl(M=La, Ce, Gd)as solid electrolytes for Li-S batteries[J]. Solid State Ionics,2018,315:26-32. doi: 10.1016/j.ssi.2017.11.033
    [97] KANG D W,MOON J,CHOI H Y,et al. Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content[J]. Journal of Power Sources,2021,490:229504. doi: 10.1016/j.jpowsour.2021.229504
    [98] JIANG Y C,ARSHAD H M U,LI H J,et al. Crystalline multi-metallic compounds as host materials in cathode for lithium-sulfur batteries[J]. Small,2021,17(22):2005332. doi: 10.1002/smll.202005332
    [99] LIU S,LI G R,GAO X P. Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium-sulfur battery[J]. ACS Applied Materials& Interfaces,2016,8(12):7783-7789.
    [100] XIE P,ZHANG B,ZHOU Y,et al. A dual-coated multifunctional separator for the high-performance lithium-sulfur batteries[J]. Electrochimica Acta,2021,395:139181. doi: 10.1016/j.electacta.2021.139181
    [101] ZHANG X,LI J,GAO C,et al. Promoting the conversion of Li2S by functional additives phenyl diselenide in lithium-sulfur batteries[J]. Journal of Power Sources,2021,482:228967. doi: 10.1016/j.jpowsour.2020.228967
    [102] WAGNER M,LIEBENOW C,BESENHARD J. Effect of polysulfide-containing electrolyte on the film formation of the negative electrode[J]. Journal of Power Sources,1997,68(2):328-332. doi: 10.1016/S0378-7753(97)02586-X
    [103] LIN Z,LIU Z,FU W,et al. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials,2013,23(8):1064-1069. doi: 10.1002/adfm.201200696
    [104] GUO W,ZHANG W,SI Y,et al. Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery[J]. Nature Communications,2021,12(1):1-13. doi: 10.1038/s41467-020-20314-w
    [105] HOU L P,ZHANG X Q,LI B Q,et al. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries[J]. Materials Today,2021,45:62-76. doi: 10.1016/j.mattod.2020.10.021
    [106] LIU Y,LI B,LIU J,et al. Pre-planted nucleation seeds for rechargeable metallic lithium anodes[J]. Journal of Materials Chemistry A,2017,5(35):18862-18869. doi: 10.1039/C7TA04932C
    [107] AKHTAR N,SUN X,AKRAM M Y,et al. A gelatin-based artificial SEI for lithium deposition regulation and polysulfide shuttle suppression in lithium-sulfur batteries[J]. Journal of Energy Chemistry,2021,52:310-317. doi: 10.1016/j.jechem.2020.04.046
    [108] KıZıLASLAN A,ÇETINKAYA T,AKBULUT H. 2H-MoS2 as an artificial solid electrolyte interface in all-solid-state lithium-sulfur batteries[J]. Advanced Materials Interfaces,2020,7(20):2001020. doi: 10.1002/admi.202001020
    [109] LIU Y,LIN D,YUEN P Y,et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advanced Materials,2017,29(10):1605531. doi: 10.1002/adma.201605531
    [110] TANG B,WU H,DU X,et al. Highly safe electrolyte enabled via controllable polysulfide release and efficient conversion for advanced lithium-sulfur batteries[J]. Small,2020,16(5):1905737. doi: 10.1002/smll.201905737
    [111] FAN L,ZHUANG H L,GAO L,et al. Regulating Li deposition at artificial solid electrolyte interphases[J]. Journal of Materials Chemistry A,2017,5(7):3483-3492. doi: 10.1039/C6TA10204B
    [112] ZHAO H,DENG N,YAN J,et al. A review on anode for lithium-sulfur batteries: progress and prospects[J]. Chemical Engineering Journal,2018,347:343-365. doi: 10.1016/j.cej.2018.04.112
    [113] YAN K,LEE H W,GAO T,et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode[J]. Nano Letters,2014,14(10):6016-6022. doi: 10.1021/nl503125u
    [114] LIU L,YIN Y X,LI J Y,et al. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes[J]. Joule,2017,1(3):563-575. doi: 10.1016/j.joule.2017.06.004
    [115] LEE S K,OH S M,PARK E,et al. Highly cyclable lithium-sulfur batteries with a dual-type sulfur cathode and a lithiated Si/SiO x nanosphere anode[J]. Nano Letters,2015,15(5):2863-2868. doi: 10.1021/nl504460s
    [116] 彭思侃, 王晨, 王楠, 等. 锂氟化碳电池用新型高比容量复合正极材料[J]. 航空材料学报, 2019, 39(4): 59-64.

    PENG S K, WANG C, WANG N, et al. A novel high specific capacity hybrid cathode for lithium fluorocabon battery[J]Journal of Aeronautical Materials, 2019, 39(4): 59-64.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  671
  • HTML全文浏览量:  242
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 修回日期:  2022-05-02
  • 网络出版日期:  2022-08-10
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。