石墨烯增强铝基复合材料制备技术及强化机制研究进展

刘文义 胡小会 李亚鹏 唐玲 张会

刘文义, 胡小会, 李亚鹏, 唐玲, 张会. 石墨烯增强铝基复合材料制备技术及强化机制研究进展[J]. 航空材料学报, 2023, 43(1): 51-59. doi: 10.11868/j.issn.1005-5053.2022.000030
引用本文: 刘文义, 胡小会, 李亚鹏, 唐玲, 张会. 石墨烯增强铝基复合材料制备技术及强化机制研究进展[J]. 航空材料学报, 2023, 43(1): 51-59. doi: 10.11868/j.issn.1005-5053.2022.000030
LIU Wenyi, HU Xiaohui, LI Yapeng, TANG Ling, ZHANG Hui. Research progress on preparation technology and strengthening mechanism of graphene reinforced aluminum matrix composites[J]. Journal of Aeronautical Materials, 2023, 43(1): 51-59. doi: 10.11868/j.issn.1005-5053.2022.000030
Citation: LIU Wenyi, HU Xiaohui, LI Yapeng, TANG Ling, ZHANG Hui. Research progress on preparation technology and strengthening mechanism of graphene reinforced aluminum matrix composites[J]. Journal of Aeronautical Materials, 2023, 43(1): 51-59. doi: 10.11868/j.issn.1005-5053.2022.000030

石墨烯增强铝基复合材料制备技术及强化机制研究进展

doi: 10.11868/j.issn.1005-5053.2022.000030
基金项目: 陕西省科技计划一般项目-工业领域(2021GY-222, 2019GY-184);陕西省教育厅专项科学研究计划项目(18JK0158);陕西理工大学校级科研基金项目(SLGQD15-10,SLGQD13(2)-18)
详细信息
    通讯作者:

    刘文义(1979—),男,博士,主要从事超高强铝合金、铝基复合材料的加工、热处理及相关研究,联系地址:陕西省汉中市汉台区陕西理工大学南区材料科学与工程学院,723000,E-mail: clxy120065@vip.163.com

  • 中图分类号: TB333

Research progress on preparation technology and strengthening mechanism of graphene reinforced aluminum matrix composites

  • 摘要: 具有二维平面结构和优异综合性能的石墨烯已成为铝基复合材料制备的理想增强体之一。本文主要介绍了液态成形法、粉末成形法和复合加工工艺等三大类石墨烯增强铝基复合材料制备技术。通过对不同类型制备技术的原理分析,结合石墨烯增强铝基复合材料的四种强化机制,总结出石墨烯增强铝基复合材料的发展方向应以复合材料的基础理论研究、制备技术的突破和大规模的工业化应用为主。

     

  • 图  1  氧化石墨烯为增强相的累积叠轧工艺流程图 [43]

    Figure  1.  Representative diagram of ARB process using graphene oxide as reinforcement [43]

    图  2  石墨烯铝基复合材料的Orwan 机制[48] (a) 初始位错;(b) 位错受阻变形;(c) 形成位错环

    Figure  2.  Schematic diagram of Orowan cycle strengthening[48] (a) initial dislocation; (b) dislocation hindered deformation; (c) dislocation loop formation

    图  3  石墨烯在铝基体中的分布形式 [48] (a)载荷方向垂直;(b)载荷方向呈一定角度;(c)载荷方向平行

    Figure  3.  Distribution models of graphene in aluminum matrix [48]  (a) horizontally; (b) obliquely; (c) vertically

    图  4  石墨烯铝基复合材料的载荷传递机制[48] (a) 石墨烯在复合材料中随机分布; (b) 外载荷下基体产生变形,石墨烯产生旋转;(c) 石墨烯产生变形和拉长;(d) 石墨烯断裂

    Figure  4.  Load transfer mechanisms of graphene-aluminum matrix composite [48]  (a) initial composite material with randomly distributed graphene;(b) matrix deforms and graphene rotates after being stressed;(c) graphene deforms and elongates;(d) graphene breaks

    表  1  各类加工方法的优缺点[22,24-28,32-36,39,43-44]

    Table  1.   Advantages and disadvantages of various processing methods[22,24-28,32-36,39,43-44]

    Type of processingMethod of processingAdvantageDisadvantage
    Liquid forming methodSqueeze casting process [25-27]
    stir casting process [28]
    ;3D printing [32-33]
    The device is simple and it is easy to operate, it has high production efficiency and is easy to realize mass productionThe graphene aluminum matrix composite has low density and is prone to generate pores and needle phase Al4C3, the graphene is easy to agglomerate
    Power forming methodHot isostatic pressing;hot extrusion processing [22,24,34-36]The preparation process is simple, the cost is low, and graphene can be uniformly dispersed in the metal matrixThe structure of graphene is easy to be damaged, the graphene aluminum matrix composite has low density and porosity, the brittle phase Al4C3 is prone to be generated if the process is not properly controlled
    Composite processing method ((liquid forming) + multiple plastic deformation)Rolling[39]
    ;accumulative roll bonding[43]
    ;casting + rolling + accumulative roll bonding[44]
    The graphene aluminum matrix composite has uniform structure, fine grains,low porosity and high production efficiencyThe technology is very complex
    下载: 导出CSV
  • [1] ROJAS J I,SIVA B V,SAHOO K L,et al. Viscoelastic behavior of a novel aluminum metal matrix composite and comparison with pure aluminum, aluminum alloys, and a composite made of Al-Mg-Si alloy reinforced with SiC particles[J]. Journal of Alloys and Compounds,2018,744(5):445-452.
    [2] TANG S S,SHAO S Y,LIU H Y,et al. Microstructure and mechanical behaviors of 6061 Al matrix hybrid composites reinforced with SiC and stainless steel particles[J]. Materials Science and Engineering:A,2021,804:140732. doi: 10.1016/j.msea.2021.140732
    [3] VENCL A,BOBIC I,AROSTEGUI S,et al. Structural, mechanical and tribological properties of A356 aluminum alloy reinforced with Al2O3, SiC and SiC + graphite particles[J]. Journal of Alloys and Compounds,2010,506(2):631-639. doi: 10.1016/j.jallcom.2010.07.028
    [4] MADHAN KUMAR S,GOVINDARAJ E,GIRISH S S S,et al. Fabrication and characterization of aluminum metal matrix composite reinforced with graphite[J]. Materials Today:Proceedings,2021,45:6708-6711. doi: 10.1016/j.matpr.2020.12.237
    [5] ZENG C Y,SUN X J,QI B J,et al. In-situ TiC particles reinforced AA2219 Al-6.3Cu alloy joint via ultrasonic frequency double-pulsed arc[J]. Materials Science and Engineering:A,2022,842:143078. doi: 10.1016/j.msea.2022.143078
    [6] LIU W C,KE Y J,SUGIO K,et al. Effects of repeated accumulative roll bonding cycles on microstructural characteristics and tensile behaviors of Al2O3 particle reinforced aluminum-matrix composites[J]. Materials Letters,2022,320:132386. doi: 10.1016/j.matlet.2022.132386
    [7] GANIGER S S,SAKRI M,NAGARAL M,et al. Microstructural evolution and mechanical behavior of 90-micron sized B4C particulates reinforced Al2219 alloy composites[J]. Materials Today:Proceedings,2021,45:7138-7142. doi: 10.1016/j.matpr.2021.02.026
    [8] GAO M Q,CHEN Z N,LI L W,et al. Microstructure and enhanced mechanical properties of hybrid-sized B4C particle-reinforced 6061Al matrix composites[J]. Materials Science and Engineering:A,2021,802:140453. doi: 10.1016/j.msea.2020.140453
    [9] ZHONG K D,ZHOU J M,ZHAO C T,et al. The effect of nickel coating on the mechanical properties and failure modes of continuous carbon fiber reinforced aluminum matrix composites[J]. Journal of Alloys and Compounds,2022,904:164134. doi: 10.1016/j.jallcom.2022.164134
    [10] NAGANUMA T,NAITO K,YANG J M,et al. The effect of a compliant polyimide nano-coating on the tensile properties of a high strength PAN-based carbon fiber[J]. Composites Science and Technology,2009,69(7-8):1319-1322. doi: 10.1016/j.compscitech.2009.03.002
    [11] LEE W S,SUE W C,LIN C F. The effects of temperature and strain rate on the properties of carbon-fiber-reinforced 7075 aluminum alloy metal-matrix composite[J]. Composites Science and Technology,2000,60(10):1975-1983. doi: 10.1016/S0266-3538(00)00083-X
    [12] CHEN B,LI Z,SHEN J,et al. Mechanical properties and strain hardening behavior of aluminum matrix composites reinforced with few-walled carbon nanotubes[J]. Journal of Alloys and Compounds,2020,826:154075. doi: 10.1016/j.jallcom.2020.154075
    [13] HANIZAM H,SALLEH M S,OMAR M Z,et al. Optimization of mechanical stir casting parameters for fabrication of carbon nanotubes-aluminum alloy composite through Taguchi method[J]. Journal of Materials Research and Technology,2019,8(2):2223-2231. doi: 10.1016/j.jmrt.2019.02.008
    [14] ZHANG S,CHEN G Q,WEI J Q,et al. Effects of energy input during friction stir processing on microstructures and mechanical properties of aluminum/carbon nanotubes nanocomposites[J]. Journal of Alloys and Compounds,2019,798:523-530. doi: 10.1016/j.jallcom.2019.05.269
    [15] ZHENG Z,ZHONG S J,ZHANG X X,et al. Graphene nano-platelets reinforced aluminum composites with anisotropic compressive properties[J]. Materials Science and Engineering:A,2020,798:140234. doi: 10.1016/j.msea.2020.140234
    [16] PYUN K R,KO S H. Graphene as a material for energy generation and control: Recent progress in the control of graphene thermal conductivity by graphene defect engineering[J]. Materials Today Energy,2019,12(6):431-442.
    [17] VENKATESAN S,XAVIOR M A. Tensile behavior of aluminum alloy (AA7050) metal matrix composite reinforced with graphene fabricated by stir and squeeze cast processes[J]. Science and Technology of Materials,2018,30(2):74-85. doi: 10.1016/j.stmat.2018.02.005
    [18] SHIN S E,CHOU H J,SHIN J H,et al. Strengthening behavior of few-layered graphene/aluminum composites [J]. Carbon,2015,82(2):143-151.
    [19] 张丹丹,战再吉. 石墨烯/金属复合材料力学性能的研究进展[J]. 材料工程,2016,44(5):112-119. doi: 10.11868/j.issn.1001-4381.2016.05.017

    ZHANG D D,ZHAN Z J. Progress in research on mechanical properties of graphene/metal composites[J]. Journal of Materials Engineering,2016,44(5):112-119. doi: 10.11868/j.issn.1001-4381.2016.05.017
    [20] HARICHANDRAN R,KUMAR R V,VENKATE-SWARAN M. Experimental and numerical evaluation of thermal conductivity of graphene nanoplatelets reinforced aluminum composites produced by powder metallurgy and hot extrusion technique[J]. Journal of Alloys and Compounds,2022,900:163401. doi: 10.1016/j.jallcom.2021.163401
    [21] 鞠渤宇,宋义伟,赵博阳,等. 片状粉末冶金的石墨烯/铝基复合材料制备过程控制与力学性能[J]. 航空材料学报,2021,41(2):45-52. doi: 10.11868/j.issn.1005-5053.2020.000184

    JU B Y,SONG Y W,ZHAO B Y,et al. Process control and mechanical properties of graphene/Al composites based on flaky powder metallurgy[J]. Journal of Aeronautical Materials,2021,41(2):45-52. doi: 10.11868/j.issn.1005-5053.2020.000184
    [22] LI G,XIONG B W. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites[J]. Journal of Alloys and Compounds,2017,697(3):31-36.
    [23] LI J C,ZHANG X X,GENG L. Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing[J]. Materials and Design,2018,144:159-168. doi: 10.1016/j.matdes.2018.02.024
    [24] YAN S J,DAI S L,ZHANG X Y,et al. Investigating aluminum alloy reinforced by graphene nanoflakes[J]. Materials Science and Engineering:A,2014,612(8):440-444.
    [25] SINGH P K. Mechanical characterization of graphene-aluminum nanocomposites[J]. Materials Today:Proceedings,2021(44):2304-2308.
    [26] ALIPOUR M,FARSANI R E. Synthesis and characterization of graphene nanoplatelets reinforced AA7068 matrix nanocomposites produced by liquid metallurgy route[J]. Materials Science and Engineering:A,2017,706(10):71-82.
    [27] VENKATESAN S,XAVIOR M A. Characterization on aluminum alloy 7050 metal matrix composite reinforced with graphene nanoparticles[J]. Procedia Manufacturing,2019,30:120-127. doi: 10.1016/j.promfg.2019.02.018
    [28] GHAZANLOU S I,EGHBALI B. Fabrication and characterization of GNPs and CNTs reinforced Al7075 matrix composites through the stir casting process[J]. International Journal of Minerals Metallurgy and Materials,2021,28:1204-1214. doi: 10.1007/s12613-020-2101-5
    [29] CHEN T,LIN Y C. Feasibility evaluation and optimization of a smart manufacturing system based on 3D printing: a review[J]. International Journal of Intelligent Systems,2017,32(1):394-413.
    [30] ZHAO Z Y,BAI P K,MISRA R D K,et al. AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis[J]. Journal of Alloys and Compounds,2019,792:203-214. doi: 10.1016/j.jallcom.2019.04.007
    [31] RASHED M G,ASHRAF M,MINES R A W,et al. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications[J]. Materials and Design,2016,95:518-533. doi: 10.1016/j.matdes.2016.01.146
    [32] HU Z,CHEN F,XU J,et al. 3D printing graphene-aluminum nanocomposites[J]. Journal of Alloys and Compounds,2018,746(5):269-276.
    [33] TIWARI J K,MANDAL A,SATHISH N,et al. Effect of graphene addition on thermal behavior of 3D printed graphene/AlSi10Mg composite[J]. Journal of Alloys and Compounds,2022,890:161725. doi: 10.1016/j.jallcom.2021.161725
    [34] SUN Y,ZHANG C,LIU B,et al. Reduced graphene oxide reinforced 7075 Al matrix composites: powder synthesis and mechanical properties[J]. Metals,2017,7:499. doi: 10.3390/met7110499
    [35] ZHANG H P,XU C,XIAO W L,et al. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion[J]. Materials Science and Engineering:A,2016,658(3):8-15.
    [36] RASHAD M,PAN F S,YU Z W,et al. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets[J]. Progress in Natural Science:Materials International,2015,25:460-470. doi: 10.1016/j.pnsc.2015.09.005
    [37] PU B W,ZHANG X,ZHAO D D,et al. Achieving prominent strengthening efficiency of graphene nanosheets in Al matrix composites by hybrid deformation[J]. Carbon,2021,183(10):530-545.
    [38] LI D,YE Y,LIAO X,et al. A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites[J]. Nano Research,2018,11(3):1642-1650. doi: 10.1007/s12274-017-1779-9
    [39] SRUTI A N,JAGANNADHAM K. Electrical conductivity of graphene composites with In and In-Ga Alloy[J]. Journal of Electronic Materials,2010,39(8):1268-1276. doi: 10.1007/s11664-010-1208-2
    [40] ZHAO Z Y,GUAN R G,GUAN X H,et al. Microstructures and properties of graphene-Cu/Al composite prepared by a novel process through clad forming and improving wettability with copper[J]. Advanced Engineering Materials,2015,17(5):663-668. doi: 10.1002/adem.201400173
    [41] AHMADI ANAS V,REIHANIAN M,LOTFI B. Accumulative roll bonding (ARB) of the composite coated strips to fabricate the multi-component AL-based metal matrix composites[J]. Materials Science and Engineering:A,2015,647(10):303-312.
    [42] TIWARI J K,MANDAL A,RUDRA A,et al. Evaluation of mechanical and thermal properties of bilayer graphene reinforced aluminum matrix composite produced by hot accumulative roll bonding[J]. Journal of Alloys and Compounds,2019,801:49-59. doi: 10.1016/j.jallcom.2019.06.127
    [43] FERREIRA F,FERREIRA I,CAMACHO E,et al. Graphene oxide-reinforced aluminum-matrix nanostructured composites fabricated by accumulative roll bonding[J]. Composites Part B,2019,164(5):265-271.
    [44] GHAZANLOU S I,EGHBALI B,PETROW R. Microstructural evolution and strengthening mechanisms in Al7075/graphene nano-plates/carbon nano-tubes composite processed through accumulative roll bonding[J]. Materials Science and Engineering:A,2021,807:140877. doi: 10.1016/j.msea.2021.140877
    [45] 聂金凤,范勇,赵磊,等. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报,2021,35(9):09009-09015. doi: 10.11896/cldb.21020046

    NIE J F,FAN Y,ZHAO L,et al. Latest research progress on the strengthening and toughening mechanism of particle reinforced aluminum matrix composites[J]. Materials Reports,2021,35(9):09009-09015. doi: 10.11896/cldb.21020046
    [46] DU X M,ZHENG K F,LIU F G. Microstructure and mechanical properties of graphene-reinforced aluminum-matrix composites[J]. Materials Technology,2018,52(6):763-768.
    [47] NAM D H,CHA S L,LIM B K,et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites[J]. Carbon,2012,50:2417-2423. doi: 10.1016/j.carbon.2012.01.058
    [48] CHEN W G,YANG T,DONG L L,et al. Advances in graphene reinforced metal matrix nanocomposites: mechanisms, processing, modelling, properties and applications[J]. Nanotechnology and Precision Engineering,2020,3(4):189-210. doi: 10.1016/j.npe.2020.12.003
    [49] ZHANG Z,CHEN D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength[J]. Scripta Materialia,2006,54(7):1321-1326. doi: 10.1016/j.scriptamat.2005.12.017
    [50] ZHAO L Y,LU H M,GAO Z J. Microstructure and mechanical properties of Al/graphene composite produced by high-pressure torsion[J]. Advanced Engineering Materials,2015,17(7):976-981. doi: 10.1002/adem.201400375
    [51] BHADAURIA A,SINGH L K,NAYAK S K,et al. Tensile deformation behavior and strengthening mechanism in graphene nanoplatelet reinforced bimodal grained aluminum nanocomposite synthesized by spark plasma sintering and hot rolling[J]. Material Characterization,2020,168:110568. doi: 10.1016/j.matchar.2020.110568
    [52] BHADAURIA A,SINGH L K,LAHA T. Combined strengthening effect of nanocrystalline matrix and graphene nanoplatelet reinforcement on the mechanical properties of spark plasma sintered aluminum based nanocomposites[J]. Materials Science and Engineering:A,2019,749:14-26. doi: 10.1016/j.msea.2019.02.007
    [53] YU H,ZHANG S Q,XIA J H,et al. Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy[J]. Materials Science and Engineering:A,2021,802:140669. doi: 10.1016/j.msea.2020.140669
    [54] XIONG B W,LIU K,XIONG W,et al. Strengthening effect induced by interfacial reaction in graphene nanoplatelets reinforced aluminum matrix composites[J]. Journal of Alloys and Compounds,2020,845:156282. doi: 10.1016/j.jallcom.2020.156282
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  15
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-05-27
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回