Effect of brazing temperature on microstructure and mechanical properties of GH4169/AgCuTi+W/Si3N4 joint
-
摘要: 采用高纯度W箔中间层复合AgCuTi活性钎料对镍基高温合金(GH4169)与Si3N4陶瓷进行连接,系统研究接头的微观界面结构以及钎焊温度对GH4169/Si3N4钎焊接头组织和力学性能的影响。结果表明:采用AgCuTi+W复合钎料可实现GH4169/Si3N4钎焊接头的有效连接,其接头组织成分为GH4169/TiNi3+TiCu+TiCu2+Ag(s, s)+Cu(s, s)+W+TiN+Ti5Si3/Si3N4;钎焊温度对接头组织和力学性能有显著影响。当钎焊温度较低时,液态钎料中的Ti元素扩散到陶瓷与钎料界面的较少,没有形成明显的反应层;当钎焊温度增加到880 ℃时,Ti元素富集在陶瓷侧反应生成厚度为2 μm的TiN和Ti5Si3反应层,此时接头的剪切强度最高,达到190.9 MPa。随着钎焊温度的升高,脆性化合物增多,使接头的力学性能大幅降低;断口结果表明在剪切过程中,裂纹在中间层萌生,后扩散至Si3N4陶瓷基体内,最终在Si3N4母材内发生断裂。Abstract: Nickel-based superalloy (GH4169) and Si3N4 ceramics were connected by AgCuTi composite active filler and high purity W foil which acts as interlayer. The effects of temperature on the microstructure evolution and mechanical properties of GH4169/ Si3N4 brazed joint were systematically studied. The results show that the effective connection of GH4169/Si3N4 brazed joint can be realized by using AgCuTi+W composite filler. The microstructure of the joint is GH4169/TiNi3+TiCu+TiCu2+Ag(s, s)+Cu(s, s)+W+TiN+Ti5Si3/Si3N4. When the brazing temperature is low, the Ti element in liquid filler diffuses to less of the ceramic interface with the filler, and no obvious reaction layer is formed; when the brazed temperature increases to 880 ℃, Ti is enriched on the ceramic side, forming a thickness of 2 μm TiN and Ti5Si3 reaction layer. At this time, the shear strength of the joint is the highest, reaching 190.9 MPa. With the increase in brazing temperature, the content of Ti-Cu compound, which is a brittle compound, increases and the mechanical properties of the joint are greatly reduced. The fracture results show that during the shear process, the crack initiates in the interlayer, and then diffuses into the Si3N4 ceramic matrix, and finally breaks on the side of Si3N4 ceramic.
-
Key words:
- nickel-base superalloy /
- Si3N4 ceramics /
- brazing /
- microstructure /
- mechanical property
-
表 1 GH4169高温合金的化学成分(质量分数/%)
Table 1. Chemical composition of GH4169 superalloy(mass fraction/%)
Ni Cr Nb Mo Ti Al Si Fe Bal 17.90 5.50 3.10 1.04 0.52 0.06 18.00 表 2 图4各特征相的EDS分析结果(原子分数/%)
Table 2. EDS results for chemical compositions of different phase in Fig.4 (atom fraction/%)
Position Ni Cr Fe Ag Cu Ti Si N W Possible phases A 7.54 8.03 8.83 69.53 4.49 1.58 — — — Ag(s,s) B 64.26 5.20 6.95 0.11 5.40 18.09 — — — TiNi3 C 6.77 0.88 2.44 0.33 49.53 40.05 — — — TiCu D 7.62 1.14 10.63 0.15 40.63 24.83 — — — TiCu2 E 0.31 0.07 0.11 2.17 97.10 0.24 — — — Cu(s,s) F 3.26 1.42 2.69 75.49 16.09 1.06 — — — Ag(s,s) G — — — 0.46 0.18 0.83 — — 98.53 W H — — — 2.59 87.25 0.58 1.91 7.68 — Cu(s,s) I — — — 61.42 11.05 0.49 1.50 25.54 — Ag(s,s) J — — — 0.57 9.51 56.40 13.39 20.14 — Ti5Si3+TiN -
[1] CHENG C,LEI M,WAN M P,et al. High temperature deformation behavior of BT25 titanium alloy[J]. Nonferrous Metals Science and Engineering,2017,8(6):51-56. [2] 王海涛,宫文. 金属材料热处理工艺研究进展[J]. 世界有色金属,2021(11):120-121. doi: 10.3969/j.issn.1002-5065.2021.11.059WANG H T,GONG W. Research progress of heat treatment technology of metal materials[J]. World Nonferrous Metals,2021(11):120-121. doi: 10.3969/j.issn.1002-5065.2021.11.059 [3] 李淑娟,包惠同,张恒. 三维陶瓷零件低温沉积过程挤压力建模及自适应控制[J]. 机械科学与技术,2016,35(2):253-259. doi: 10.13433/j.cnki.1003-8728.2016.0217LI S J,BAO H T,ZHANG H. Modeling for extrusion force and adaptive control in the freeze deposition process of three dimensional ceramic components[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(2):253-259. doi: 10.13433/j.cnki.1003-8728.2016.0217 [4] DUAN Y S,LIU N,ZHANG J X,et al. Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties[J]. Journal of the European Ceramic Society,2020,40(2):298-304. doi: 10.1016/j.jeurceramsoc.2019.10.003 [5] 张创,宋仪杰. 氮化硅陶瓷的研究与应用进展[J]. 中国陶瓷工业,2021,28(3):40-47. doi: 10.13958/j.cnki.ztcg.2021.03.009ZHANG C,SONG Y J. Progress in research and application of silicon nitride ceramics[J]. China Ceramic Industry,2021,28(3):40-47. doi: 10.13958/j.cnki.ztcg.2021.03.009 [6] 王微,胥凯,张帅谋,等. 陶瓷/金属钎焊连接材料与工艺研究进展[J]. 黄河科技学院学报,2019,21(5):30-34.WANG W,XU K,ZHANG S M,et al. Research progress of brazing materials and processes in ceramic/metal jioning[J]. Journal of Huanghe S& T College,2019,21(5):30-34. [7] 崔雪峰,李建平,李明星,等. 氮化物基陶瓷高温透波材料的研究进展[J]. 航空材料学报,2020,40(1):21-34. doi: 10.11868/j.issn.1005-5053.2019.000047CUI X F,LI J P,LI M X,et al. Research progress of nitride based ceramic high temperature wave transparent materials[J]. Journal of Aeronautical Materials,2020,40(1):21-34. doi: 10.11868/j.issn.1005-5053.2019.000047 [8] KIN J J,PARK J W,EAGER T W. Interfacial microstructure of partial transient liquid phase bonded Si3N4-to-Inconel 718 joints[J]. Materials Science and Engineering:A,2003,344(1/2):240-244. [9] DONG D,SHI K Q,ZHU D D,et al. Microstructure evolution and mechanical properties of high Nb-TiAl alloy/GH4169 joints brazed using CuTiZrNi amorphous filler alloy[J]. Intermetallics,2021,139:107351. doi: 10.1016/j.intermet.2021.107351 [10] 韦康,张勇,王涛,等. GH4169合金晶粒尺寸与持久性能的关联性[J]. 航空材料学报,2020,40(1):93-99. doi: 10.11868/j.issn.1005-5053.2019.000076WEI K,ZHANG Y,WANG T,et al. Investigations on correlation between grain size and stress rupture property of GH4169 alloy[J]. Journal of Aeronautical Materials,2020,40(1):93-99. doi: 10.11868/j.issn.1005-5053.2019.000076 [11] BHUSHAN R K,SHARMA D. Optimization of parameters for maximum tensile strength of friction stir welded AA6082/Si3N4 and AA6082/SiC composite joints[J]. Silicon,2020,12(5):1195-1209. doi: 10.1007/s12633-019-00216-3 [12] THIRUNAVUKARASU G,MURUGAN B,CHATTERJEE S,et al. Influence of welding pressure on diffusion welded joints using interlayer[J]. Welding Journal,2017,96(2):53S-62S. [13] WANG Y,XIA Y H,YANG Z W,et al. Interfacial microstructure and mechanical properties of TC4/Ti3SiC2 contact-reactive brazed joints using a Cu interlayer[J]. Ceramics International,2018,44(18):22154-22164. doi: 10.1016/j.ceramint.2018.08.328 [14] YANG J,LIU D X,ZHANG X H,et al. The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy[J]. International Journal of Fatigue,2020,133:105373. doi: 10.1016/j.ijfatigue.2019.105373 [15] SONAR T,BALAASUBTAMANIAN V,MALARVIZHI S,et al. An overview on welding of Inconel 718 alloy Effect of welding processes on microstructural evolution and mechanical properties of joints[J]. Materials Characterization,2021,174:110997. doi: 10.1016/j.matchar.2021.110997 [16] ZHAO Y X,SONG X G,TAN C W,et al. Microstructural evolution of Si3N4/Ti6Al4V joints brazed with nano-Si3N4 reinforced AgCuTi composite filler[J]. Vacuum,2017,142:58-65. doi: 10.1016/j.vacuum.2017.05.005 [17] WANG Y,YANG Z W,ZHANG L X,et al. Microstructure and mechanical properties of invar alloy and si3n4 ceramic brazed joints[J]. Rare Metal Materials and Engineering,2015,44(2):339-343. [18] ONG F S,TOBE H,FUJII G,et al. Microstructural evolution and mechanical characterization of Nb-interlayer-inserted Ti-6Al-4V/Si3N4 joints brazed with AuNiTi filler[J]. Materials Science and Engineering:A,2020,778:139093. doi: 10.1016/j.msea.2020.139093 [19] KANG Y H,FENG K M,ZHANG W T,et al. Microstructural and mechanical properties of CFC composite/Ti6Al4V joints brazed with Ag-Cu-Ti and refractory metal foils[J]. Archives of Civil and Mechanical Engineering,2021,21(3):10. [20] GUO W,ZHANG H Q,MA K T,et al. Reactive brazing of silicon nitride to Invar alloy using Ni foam and AgCuTi intermediate layers[J]. Ceram International,2019,45(11):13979-13987. doi: 10.1016/j.ceramint.2019.04.097 [21] LAENG J,WU Z,WANG Y,et al. Phase formation in ti-ni binary system during solid-state synthesis[J]. Shape Memory and Superelasticity,2018,4(3):351-359. doi: 10.1007/s40830-018-0181-0 [22] HE Y M,ZHANG J,LI X D. Characterization of the Si3N4/Si3N4 joints fabricated using particles modified braze[J]. Materials Science and Engineering:A,2014,616:107-115. doi: 10.1016/j.msea.2014.08.023 [23] LIU H B,ZHANG L X,WU L Z,et al. Vacuum brazing of SiO2 glass ceramic and Ti-6Al-4V alloy using AgCuTi filler foil[J]. Materials Science and Engineering:A,2008,498(1/2):321-326. doi: 10.1016/j.msea.2008.08.008 [24] LI M,SHI K Q,ZHU D D,et al. Microstructure and mechanical properties of Si3N4 ceramic and (TiB + Y2O3)/Ti matrix composite joints brazed with AgCu/Cu foam/AgCu multilayered filler[J]. Journal of Manufacturing Processes,2021,66:220-227. doi: 10.1016/j.jmapro.2021.04.025 [25] SHANG J L,YAN J Z,LI N. Brazing W and Fe-Ni-Co alloy using Ag-28Cu and Ag-27Cu-3.5Ti fillers[J]. Journal of Alloys and Compounds,2014,611:91-95. doi: 10.1016/j.jallcom.2014.05.106 [26] ZHANG J,LIU J Y,WANG T P. Microstructure and brazing mechanism of porous Si3N4/Invar joint brazed with Ag-Cu-Ti/Cu/Ag-Cu multi-layered filler[J]. Journal of Materials Science & Technology,2018,34(4):713-719. [27] XIN C L,YAN J Z,WANG Q Y,et al. The microstructural evolution and formation mechanism in Si3N4/AgCuTi/Kovar braze joints[J]. Journal of Alloys and Compounds,2020,820:153189. doi: 10.1016/j.jallcom.2019.153189 [28] 梁基谢夫. 金属二元系相图手册[M]. 北京: 化学工业出版社, 2009.Лякишев Н П. Handbook of phase diagrams of metal binary systems[M]. Beijing: Chemical Industry Press, 2009. [29] SONG X G,CAO J,LI C,et al. Interfacial microstructure and joining properties of TiAl/Si3N4 brazed joints[J]. Materials Science and Engineering:A,2011,528(22/23):7030-7035. doi: 10.1016/j.msea.2011.05.079 [30] LIU M X,LIU C F,ZHANG J,et al. Microstructure and mechanical properties of BN-Si3N4 and AlON joints brazed with Ag-Cu-Ti filler alloy[J]. Journal of the European Ceramic Society,2018,38(4):1265-1270. doi: 10.1016/j.jeurceramsoc.2017.10.001 [31] WANG X H,DONG D,YANG X H,et al. Microstructure and shear strength of brazing high entropy TiZrHfNbMo alloy and Si3N4 ceramics joints[J]. Crystals,2021,11(5):472. doi: 10.3390/cryst11050472 [32] 尹翩翩. Si3N4陶瓷与镍基合金钎焊连接研究[D]. 镇江: 江苏科技大学, 2017.YIN P P. Study on brazing connection between Si3N4 ceramics and nickel base alloy[J]. Zhenjiang: Jiangsu University of Science and Technology, 2017. [33] LI W W,FENG H L,CHEN B,et al. Joining of Cf/SiC composite with Cu-Pd-V filler alloy and Mo interlayer[J]. Welding in the World,2021,65(4):713-719. doi: 10.1007/s40194-020-01033-8 [34] SUN Z,ZHANG L X,CHANG Q,et al. Active brazed Invar-SiO2f/SiO2 joint using a low-expansion composite interlayer[J]. Journal of Materials Processing Technology,2018,255:8-16. doi: 10.1016/j.jmatprotec.2017.11.058 -