钎焊温度对GH4169/AgCuTi+W/Si3N4的接头组织与力学性能的影响

薛阳 朱冬冬 陶锋 董多 王晓红 马腾飞

薛阳, 朱冬冬, 陶锋, 董多, 王晓红, 马腾飞. 钎焊温度对GH4169/AgCuTi+W/Si3N4的接头组织与力学性能的影响[J]. 航空材料学报, 2022, 42(6): 48-56. doi: 10.11868/j.issn.1005-5053.2022.000035
引用本文: 薛阳, 朱冬冬, 陶锋, 董多, 王晓红, 马腾飞. 钎焊温度对GH4169/AgCuTi+W/Si3N4的接头组织与力学性能的影响[J]. 航空材料学报, 2022, 42(6): 48-56. doi: 10.11868/j.issn.1005-5053.2022.000035
XUE Yang, ZHU Dongdong, TAO Feng, DONG Duo, WANG Xiaohong, MA Tengfei. Effect of brazing temperature on microstructure and mechanical properties of GH4169/AgCuTi+W/Si3N4 joint[J]. Journal of Aeronautical Materials, 2022, 42(6): 48-56. doi: 10.11868/j.issn.1005-5053.2022.000035
Citation: XUE Yang, ZHU Dongdong, TAO Feng, DONG Duo, WANG Xiaohong, MA Tengfei. Effect of brazing temperature on microstructure and mechanical properties of GH4169/AgCuTi+W/Si3N4 joint[J]. Journal of Aeronautical Materials, 2022, 42(6): 48-56. doi: 10.11868/j.issn.1005-5053.2022.000035

钎焊温度对GH4169/AgCuTi+W/Si3N4的接头组织与力学性能的影响

doi: 10.11868/j.issn.1005-5053.2022.000035
基金项目: 国家自然科学基金项目(52071188,52171120)
详细信息
    通讯作者:

    朱冬冬(1986—),男,博士,教授,主要从事TiAl合金相关研究,联系地址:浙江省衢州市衢州学院机械工程学院(324000),E-mail: zhudd8@163.com

  • 中图分类号: TG425+.2

Effect of brazing temperature on microstructure and mechanical properties of GH4169/AgCuTi+W/Si3N4 joint

  • 摘要: 采用高纯度W箔中间层复合AgCuTi活性钎料对镍基高温合金(GH4169)与Si3N4陶瓷进行连接,系统研究接头的微观界面结构以及钎焊温度对GH4169/Si3N4钎焊接头组织和力学性能的影响。结果表明:采用AgCuTi+W复合钎料可实现GH4169/Si3N4钎焊接头的有效连接,其接头组织成分为GH4169/TiNi3+TiCu+TiCu2+Ag(s, s)+Cu(s, s)+W+TiN+Ti5Si3/Si3N4;钎焊温度对接头组织和力学性能有显著影响。当钎焊温度较低时,液态钎料中的Ti元素扩散到陶瓷与钎料界面的较少,没有形成明显的反应层;当钎焊温度增加到880 ℃时,Ti元素富集在陶瓷侧反应生成厚度为2 μm的TiN和Ti5Si3反应层,此时接头的剪切强度最高,达到190.9 MPa。随着钎焊温度的升高,脆性化合物增多,使接头的力学性能大幅降低;断口结果表明在剪切过程中,裂纹在中间层萌生,后扩散至Si3N4陶瓷基体内,最终在Si3N4母材内发生断裂。

     

  • 图  1  镍基高温合金GH4169的组织形貌图

    Figure  1.  SEM of GH4169 Superalloy

    图  2  AgCuTi粉末钎料+W钎焊GH4169/Si3N4陶瓷摆放示意图

    Figure  2.  Assembly schematic of GH4169/Si3N4 brazing with AgCuTi braze and W foil

    图  3  钎焊工艺曲线图

    Figure  3.  Thermal cycling curve of brazing

    图  4  GH4169/Si3N4陶瓷的接头形貌图(880 ℃,15 min) (a)钎缝整体;(b)GH4169侧;(c)Si3N4

    Figure  4.  Microstructure of the GH4169/Si3N4 joint brazed at 880 ℃ for 15 min  (a) entire joint;(b)GH4169 side;(c)Si3N4 side

    图  5  GH4169/Si3N4接头的XRD图(880 ℃,15 min)

    Figure  5.  XRD pattern of GH4169/Si3N4 joint brazed at 880 ℃ for 15 min

    图  6  GH4169/Si3N4接头元素面扫结果(880 ℃,15 min) (a)SEM 图片;(b)~(i)EDS

    Figure  6.  Element distribution maps of GH4169/Si3N4 joint brazed at 880 ℃ for 15 min (a)SEM image;(b)-(i)EDS

    图  7  不同钎焊温度下保温15 min的GH4169/Si3N4接头钎缝组织形貌图

    Figure  7.  Microstructure of the GH4169/Si3N4 joint brazed at different temperatures for 15 min  (a)820 ℃;(b)850 ℃;(c)880 ℃;(d)910 ℃

    图  8  GH4169/Si3N4接头实物图 (a) 剪切样;(b) 金相样

    Figure  8.  Physical drawing of GH4169/Si3N4 joint  (a) shear sample;(b) metallographic sample

    图  9  钎焊温度对GH4169/Si3N4接头剪切强度的影响

    Figure  9.  Effect of brazing temperature on shear strength of brazed joint

    图  10  GH4169/Si3N4接头断口形貌(880 ℃,15 min) (a)合金侧断口形貌;(b)陶瓷侧断口形貌

    Figure  10.  Fracture morphology of GH4169/Si3N4 joints brazed at 880 ℃ for 10 min  (a)fracture morphology of GH4169 side;(b)fracture morphology of Si3N4 side

    表  1  GH4169高温合金的化学成分(质量分数/%)

    Table  1.   Chemical composition of GH4169 superalloy(mass fraction/%)

    NiCrNbMoTiAlSiFe
    Bal17.905.503.101.040.520.0618.00
    下载: 导出CSV

    表  2  图4各特征相的EDS分析结果(原子分数/%)

    Table  2.   EDS results for chemical compositions of different phase in Fig.4 (atom fraction/%)

    PositionNiCrFeAgCuTiSiNWPossible phases
    A7.548.038.8369.534.491.58Ag(s,s)
    B64.265.206.950.115.4018.09TiNi3
    C6.770.882.440.3349.5340.05TiCu
    D7.621.1410.630.1540.6324.83TiCu2
    E0.310.070.112.1797.100.24Cu(s,s)
    F3.261.422.6975.4916.091.06Ag(s,s)
    G0.460.180.8398.53W
    H2.5987.250.581.917.68Cu(s,s)
    I61.4211.050.491.5025.54Ag(s,s)
    J0.579.5156.4013.3920.14Ti5Si3+TiN
    下载: 导出CSV
  • [1] CHENG C,LEI M,WAN M P,et al. High temperature deformation behavior of BT25 titanium alloy[J]. Nonferrous Metals Science and Engineering,2017,8(6):51-56.
    [2] 王海涛,宫文. 金属材料热处理工艺研究进展[J]. 世界有色金属,2021(11):120-121. doi: 10.3969/j.issn.1002-5065.2021.11.059

    WANG H T,GONG W. Research progress of heat treatment technology of metal materials[J]. World Nonferrous Metals,2021(11):120-121. doi: 10.3969/j.issn.1002-5065.2021.11.059
    [3] 李淑娟,包惠同,张恒. 三维陶瓷零件低温沉积过程挤压力建模及自适应控制[J]. 机械科学与技术,2016,35(2):253-259. doi: 10.13433/j.cnki.1003-8728.2016.0217

    LI S J,BAO H T,ZHANG H. Modeling for extrusion force and adaptive control in the freeze deposition process of three dimensional ceramic components[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(2):253-259. doi: 10.13433/j.cnki.1003-8728.2016.0217
    [4] DUAN Y S,LIU N,ZHANG J X,et al. Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties[J]. Journal of the European Ceramic Society,2020,40(2):298-304. doi: 10.1016/j.jeurceramsoc.2019.10.003
    [5] 张创,宋仪杰. 氮化硅陶瓷的研究与应用进展[J]. 中国陶瓷工业,2021,28(3):40-47. doi: 10.13958/j.cnki.ztcg.2021.03.009

    ZHANG C,SONG Y J. Progress in research and application of silicon nitride ceramics[J]. China Ceramic Industry,2021,28(3):40-47. doi: 10.13958/j.cnki.ztcg.2021.03.009
    [6] 王微,胥凯,张帅谋,等. 陶瓷/金属钎焊连接材料与工艺研究进展[J]. 黄河科技学院学报,2019,21(5):30-34.

    WANG W,XU K,ZHANG S M,et al. Research progress of brazing materials and processes in ceramic/metal jioning[J]. Journal of Huanghe S& T College,2019,21(5):30-34.
    [7] 崔雪峰,李建平,李明星,等. 氮化物基陶瓷高温透波材料的研究进展[J]. 航空材料学报,2020,40(1):21-34. doi: 10.11868/j.issn.1005-5053.2019.000047

    CUI X F,LI J P,LI M X,et al. Research progress of nitride based ceramic high temperature wave transparent materials[J]. Journal of Aeronautical Materials,2020,40(1):21-34. doi: 10.11868/j.issn.1005-5053.2019.000047
    [8] KIN J J,PARK J W,EAGER T W. Interfacial microstructure of partial transient liquid phase bonded Si3N4-to-Inconel 718 joints[J]. Materials Science and Engineering:A,2003,344(1/2):240-244.
    [9] DONG D,SHI K Q,ZHU D D,et al. Microstructure evolution and mechanical properties of high Nb-TiAl alloy/GH4169 joints brazed using CuTiZrNi amorphous filler alloy[J]. Intermetallics,2021,139:107351. doi: 10.1016/j.intermet.2021.107351
    [10] 韦康,张勇,王涛,等. GH4169合金晶粒尺寸与持久性能的关联性[J]. 航空材料学报,2020,40(1):93-99. doi: 10.11868/j.issn.1005-5053.2019.000076

    WEI K,ZHANG Y,WANG T,et al. Investigations on correlation between grain size and stress rupture property of GH4169 alloy[J]. Journal of Aeronautical Materials,2020,40(1):93-99. doi: 10.11868/j.issn.1005-5053.2019.000076
    [11] BHUSHAN R K,SHARMA D. Optimization of parameters for maximum tensile strength of friction stir welded AA6082/Si3N4 and AA6082/SiC composite joints[J]. Silicon,2020,12(5):1195-1209. doi: 10.1007/s12633-019-00216-3
    [12] THIRUNAVUKARASU G,MURUGAN B,CHATTERJEE S,et al. Influence of welding pressure on diffusion welded joints using interlayer[J]. Welding Journal,2017,96(2):53S-62S.
    [13] WANG Y,XIA Y H,YANG Z W,et al. Interfacial microstructure and mechanical properties of TC4/Ti3SiC2 contact-reactive brazed joints using a Cu interlayer[J]. Ceramics International,2018,44(18):22154-22164. doi: 10.1016/j.ceramint.2018.08.328
    [14] YANG J,LIU D X,ZHANG X H,et al. The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy[J]. International Journal of Fatigue,2020,133:105373. doi: 10.1016/j.ijfatigue.2019.105373
    [15] SONAR T,BALAASUBTAMANIAN V,MALARVIZHI S,et al. An overview on welding of Inconel 718 alloy Effect of welding processes on microstructural evolution and mechanical properties of joints[J]. Materials Characterization,2021,174:110997. doi: 10.1016/j.matchar.2021.110997
    [16] ZHAO Y X,SONG X G,TAN C W,et al. Microstructural evolution of Si3N4/Ti6Al4V joints brazed with nano-Si3N4 reinforced AgCuTi composite filler[J]. Vacuum,2017,142:58-65. doi: 10.1016/j.vacuum.2017.05.005
    [17] WANG Y,YANG Z W,ZHANG L X,et al. Microstructure and mechanical properties of invar alloy and si3n4 ceramic brazed joints[J]. Rare Metal Materials and Engineering,2015,44(2):339-343.
    [18] ONG F S,TOBE H,FUJII G,et al. Microstructural evolution and mechanical characterization of Nb-interlayer-inserted Ti-6Al-4V/Si3N4 joints brazed with AuNiTi filler[J]. Materials Science and Engineering:A,2020,778:139093. doi: 10.1016/j.msea.2020.139093
    [19] KANG Y H,FENG K M,ZHANG W T,et al. Microstructural and mechanical properties of CFC composite/Ti6Al4V joints brazed with Ag-Cu-Ti and refractory metal foils[J]. Archives of Civil and Mechanical Engineering,2021,21(3):10.
    [20] GUO W,ZHANG H Q,MA K T,et al. Reactive brazing of silicon nitride to Invar alloy using Ni foam and AgCuTi intermediate layers[J]. Ceram International,2019,45(11):13979-13987. doi: 10.1016/j.ceramint.2019.04.097
    [21] LAENG J,WU Z,WANG Y,et al. Phase formation in ti-ni binary system during solid-state synthesis[J]. Shape Memory and Superelasticity,2018,4(3):351-359. doi: 10.1007/s40830-018-0181-0
    [22] HE Y M,ZHANG J,LI X D. Characterization of the Si3N4/Si3N4 joints fabricated using particles modified braze[J]. Materials Science and Engineering:A,2014,616:107-115. doi: 10.1016/j.msea.2014.08.023
    [23] LIU H B,ZHANG L X,WU L Z,et al. Vacuum brazing of SiO2 glass ceramic and Ti-6Al-4V alloy using AgCuTi filler foil[J]. Materials Science and Engineering:A,2008,498(1/2):321-326. doi: 10.1016/j.msea.2008.08.008
    [24] LI M,SHI K Q,ZHU D D,et al. Microstructure and mechanical properties of Si3N4 ceramic and (TiB + Y2O3)/Ti matrix composite joints brazed with AgCu/Cu foam/AgCu multilayered filler[J]. Journal of Manufacturing Processes,2021,66:220-227. doi: 10.1016/j.jmapro.2021.04.025
    [25] SHANG J L,YAN J Z,LI N. Brazing W and Fe-Ni-Co alloy using Ag-28Cu and Ag-27Cu-3.5Ti fillers[J]. Journal of Alloys and Compounds,2014,611:91-95. doi: 10.1016/j.jallcom.2014.05.106
    [26] ZHANG J,LIU J Y,WANG T P. Microstructure and brazing mechanism of porous Si3N4/Invar joint brazed with Ag-Cu-Ti/Cu/Ag-Cu multi-layered filler[J]. Journal of Materials Science & Technology,2018,34(4):713-719.
    [27] XIN C L,YAN J Z,WANG Q Y,et al. The microstructural evolution and formation mechanism in Si3N4/AgCuTi/Kovar braze joints[J]. Journal of Alloys and Compounds,2020,820:153189. doi: 10.1016/j.jallcom.2019.153189
    [28] 梁基谢夫. 金属二元系相图手册[M]. 北京: 化学工业出版社, 2009.

    Лякишев Н П. Handbook of phase diagrams of metal binary systems[M]. Beijing: Chemical Industry Press, 2009.
    [29] SONG X G,CAO J,LI C,et al. Interfacial microstructure and joining properties of TiAl/Si3N4 brazed joints[J]. Materials Science and Engineering:A,2011,528(22/23):7030-7035. doi: 10.1016/j.msea.2011.05.079
    [30] LIU M X,LIU C F,ZHANG J,et al. Microstructure and mechanical properties of BN-Si3N4 and AlON joints brazed with Ag-Cu-Ti filler alloy[J]. Journal of the European Ceramic Society,2018,38(4):1265-1270. doi: 10.1016/j.jeurceramsoc.2017.10.001
    [31] WANG X H,DONG D,YANG X H,et al. Microstructure and shear strength of brazing high entropy TiZrHfNbMo alloy and Si3N4 ceramics joints[J]. Crystals,2021,11(5):472. doi: 10.3390/cryst11050472
    [32] 尹翩翩. Si3N4陶瓷与镍基合金钎焊连接研究[D]. 镇江: 江苏科技大学, 2017.

    YIN P P. Study on brazing connection between Si3N4 ceramics and nickel base alloy[J]. Zhenjiang: Jiangsu University of Science and Technology, 2017.
    [33] LI W W,FENG H L,CHEN B,et al. Joining of Cf/SiC composite with Cu-Pd-V filler alloy and Mo interlayer[J]. Welding in the World,2021,65(4):713-719. doi: 10.1007/s40194-020-01033-8
    [34] SUN Z,ZHANG L X,CHANG Q,et al. Active brazed Invar-SiO2f/SiO2 joint using a low-expansion composite interlayer[J]. Journal of Materials Processing Technology,2018,255:8-16. doi: 10.1016/j.jmatprotec.2017.11.058
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  74
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 修回日期:  2022-10-12
  • 网络出版日期:  2022-10-11
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回