Application research status of high-entropy alloys in welding field
-
摘要: 高熵合金由于其新颖的设计理念及特殊性能,成为材料科学领域内新的研究热点。目前高熵合金的研究与应用还主要局限在材料的制备与合成方面,随着其在工业领域的广泛应用,必然涉及高熵合金在焊接领域的研究。本文从高熵合金同种材料的焊接、高熵合金和异种材料之间的焊接以及高熵合金作为填充材料进行异种材料之间的焊接三个方面展开叙述,重点分析焊接方法、高熵合金组分、焊接初始状态及焊接参数等因素对接头组织和性能的影响,特别在高熵合金作为填充材料时,利用高熵效应和迟滞扩散效应进行的界面调控尤为重要;对不同制备方法下的高熵合金涂层进行细致分析,介绍熔覆工艺、添加微量元素以及后热处理的影响,着重对比激光熔覆工艺下高熵合金涂层的耐磨性;通过对高熵合金在焊接领域的研究与应用进行总结,提出目前存在的问题主要是尚未建立高熵合金体系和焊接工艺间的对应标准及阐明缺陷的形成机理;并对未来高熵合金在焊接领域的重点研究方向进行了展望。Abstract: Owing to novel design concepts and their unique properties, high-entropy alloy (HEA) has become a hot topic in material science. At present, the studies and applications of high-entropy alloy are still mainly limited to the preparation and synthesis of materials. With its wide application in industry, it must involve the research of high-entropy alloy in welding field. This paper describes the welding of high-entropy alloy with the same material, welding between high-entropy alloy and dissimilar material, and welding between dissimilar material with high-entropy alloy as filler material. The paper focuses on analyzing the welding method, high entropy alloy components, the initial state of welding and welding parameters, and other factors on the joint organization and properties. While the high-entropy alloy is mainly applied as filler material, the high entropy effect and hysteresis diffusion effect for interface controlling are particularly important. Finally, the high-entropy alloy coatings under different preparation methods are analyzed in detail, introducing the cladding process, the addition of microelements, the effect of post-heat treatment, and comparing the wear resistance high-entropy alloy coatings under the laser melting process. By summarizing the research and application of high-entropy alloy in the welding field, it is pointed out that the current problems are that the corresponding standard between high-entropy alloy system and welding process has not been established and the formation mechanism of defects has not been clarified. The future research directions of high entropy alloy in welding field are proposed.
-
Key words:
- high-entropy alloy /
- high-entropy effect /
- welding /
- filling material /
- coating
-
图 2 Al0.3CoCrCu0.3FeNi高熵合金组织EBSD分析[17] (a) 焊后SZ的核心平均取向差;(b)SZ中心区域的晶粒平均取向差;(c) , (d) SZ和BM的反极图;(e) , (f) SZ和BM在法向-横向-焊接方向的极图
Figure 2. EBSD analysis of the microstructure of Al0.3CoCrCu0.3FeNi high-entropy alloy[17] (a) Kernel average misorientation (KAM) map of SZ on AS; (b) grain average misorientation (GAM) map at center of SZ; (c) , (d) inverse pole figures of SZ and BM; (e) , (f) pole figures in ND-TD-WD frame of SZ and BM
图 5 304SS和Q235钢的激光沉积焊接中添加不同填充层焊缝区的胞状晶组织[31] (a) (CrMnFe)1(CoNi)9;(b) (CrMnFe)5(CoNi)5; (c) (CrMnFe)9(CoNi)1;(d) 异种接头的硬度分布; (e) 三点弯曲实验中母材和异种接头的典型应力-应变曲线
Figure 5. Cellular crystal microstrctures of weld zone in laser deposition welding of 304SS and Q235 steel with different filler layers[31] (a) (CrMnFe)1(CoNi)9; (b) (CrMnFe)5(CoNi)5; (c) (CrMnFe)9(CoNi)1; (d) hardness distributions of dissimilar joints; (e) typical stress-strain curves of BM and dissimilar joints in three-point bending tests
表 1 高熵合金焊接的接头力学性能[8-9,13,15,17-18,20,23-24,31-32,36,38]
Table 1. Mechanical properties of welding joints of HEA[8-9,13,15,17-18,20,23-24,31-32,36,38]
Base metal Filler material Welding method Optimum properties References Al0.2CoCrFeNiMo0.5 — Gas tungsten arc welding (GTAW) Yield strength: 300 MPa
Tensile strength: 762 MPa
Fracture strain: 15.5%[8] CrMnFeCoNi — Electron beam welding (EBW) Tensile strength:
77 K:985 MPa
293 K:565 MPa[9] AlCoCrFeNi2.1 — Laser beam welding (LBW) Tensile strength: 1201 MPa [13] AlCoCrFeNi Ni-based Brazing Shear strength:
(687.2±23.2) MPa[15] Al0.3CoCrCu0.3FeNi — Friction stir welding (FSW) Yield strength: 920 MPa
Elongation rate: 37%[17] Al0.1CoCrFeNi and
AISI304 stainless steel— Electron beam welding (EBW) Yield strength: (310±10) MPa
Tensile strength: (560±15) MPa[18] CoCrFeMnNi and
316 stainless steel— Laser beam welding (LBW) Tensile strength: 450 MPa [20] AlCoCrFeNi and FGH98 BNi-2 Brazing Shear strength: 454 MPa [23] Fe39Mn20Co20Cr15Si5Al1
and Al-7050— Friction stir welding (FSW) Tensile strength: 400 MPa
Elongation rate: 10%[24] 304SS and Q235 (CrMnFe)5(CoNi)5
powdersLaser deposition welding Bending strength: (983±15) MPa [31] TC4 titanium and
6082 aluminumCoNiCuNb0.5V1.5 Laser beam welding (LBW) Tensile strength: 190 MPa [32] ZSC ceramic and
GH99 superalloyTi/FeCoNiCrCu composite filler layer Brazing Shear strength: 71 MPa [36] ZrB2-20vol%SiC
and pure NbCoFeCrNiCu Brazing Shear strength: 216 MPa [38] 表 2 激光熔敷制备的具有高硬度和高耐磨性高熵合金涂层研究报道[55-66]
Table 2. Literatures of HEA coating prepared by laser cladding with high microhardness and wear resistance[55-66]
Substrate Composition of high-entropy alloy coatings Hardness and wear resistance References 304 stainless steel AlCoCrFeNiNbx (x=0-1) When x is 0.75, the wear resistance of the coating is optimal, and the Vickers hardness increases with increasing Nb content. The changes of microstructure are quiaxed crystal to hypoeutectic and to hypereutectic in AlCoCrFeNiNbx alloy coatings [55] 45 steel FeNiCoCrTi0.5Nbx (x=0.25-1) FeNiCoCrTi0.5Nb0.5 coating has the highest average hardness of 766.62HV, with the best wear resistance and the lowest wear rate, and all coatings are with abrasive wear mechanisms [56] M2 tool steel MoFe1.5CrTiWAlNbx
(x=1.5-2.5,3)The hardness and wear resistance of the coatings increase as Nb content increases, with the best performance at x=3 [57] 4Cr5MoSiV steel FeCoCrNiMnAlx
(x=0-0.75)Addition of Al can promote the formation of BCC phase and refine the grain. With the increase of Al content, the microhardness and frictional-mass-loss of room temperature show that the increasing and decreasing trend is from 224.4 HV0.5 to 344.2 HV0.5 and 6.0 mg to 1.1 mg respectively [58] Q235 AlxMo0.5NbFeTiMn2
(x=1-2)Addition of Al can form BCC and (Nb,Ti)C carbide phases, which promotes solid solution strengthening. As Al content increases, the properties of the coating increase, with the hardness of 1098.5HV0.2 at x=2 is five times than that of substrate [59] 45 steel AlCrCoNiFeCTax (x=0-1) Addition of Ta increases the wear resistance of AlCrCoNiFeCTax high-entropy coating in both air and NaCl solutions. At x = 0.5 and 1.0, the wear rates of the coatings in NaCl solution are reduced by 17% and 12% compared to air. Solid solution strengthening, diffuse strengthening of Ta and Fe and the presence of TaC are the main factors of the enhancement of hardness [60] ASTM 4140 FeCoCrNi-WC Compared to plasma beam cladding, laser cladding has a greater ability to retain WC particles, resulting in coatings with twice the microhardness and better wear resistance. This is because plasma coating causes decarburization and oxidation of WC particles, which deteriorates the properties [61] Q235 AlCoCrFeNi-xNbC Addition of NbC ceramic particles can reduce the content of FCC phases in the original high-entropy coating and inhibits grain growth. The hardness and wear resistance of AlCoCrFeNi-xNbC coating are significantly improved and it is optimal at x=20% with the hardness of 525HV [62] 304 stainless steel CoCrCuFeNiSi0.2(Ti,C)x
(x=0-1.5)Addition of Ti and C elements can lead to in-situ synthesis of TiC ceramic phases at the grain boundaries of the high entropy mircrostrcture, which enhances the microhardness and wear resistance of the coatings. At x = 1.0, the average hardness and wear volume of the coating are 498.5HV0.2 and 0.42 mm3 respectively [63] 40Cr Al3CoCrCu1/2FeMoNiTi The high-entropy alloy coatings have an obvious age-hardening effect, and the best age-hardening effect can be obtained under annealing at 700 °C, with a maximum hardness of 924HV [64] AISI
1045AlCoCrFeNiTi0.8 As the heat treatment temperature increases, coarsening and Ostwald ripening of the precipitated phase occur, which reduces the wear resistance of the high-entropy coatings [65] Q245R CrFeMoNbTiW The wear resistance and microhardness of the coatings are significantly increased under post heat treatment conditions of 800-1000 °C/10 h, with a maximum hardness of 1176HV0.2, which is an increase of 72.5% compared to the unheated coatings [66] -
[1] 阳隽觎,周云军,张勇,等. 多组元高熵合金的研究现状及前景展望[J]. 中国材料科技与设备,2007,4(6):16-19.YANG J Y,ZHOU Y J,ZHANG Y,et al. Research progress of high-entropy alloys with multiprincipal components[J]. Chinese Materials Science Technology & Equipment,2007,4(6):16-19. [2] YEH J W,CHEN S K,LIN S J,et al. Nanostructured high- entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials,2004,6(5):299-303. doi: 10.1002/adem.200300567 [3] HSU Y J,CHIANG W C,WU J K. Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution[J]. Materials Chemistry and Physics,2005,92(1):112-117. doi: 10.1016/j.matchemphys.2005.01.001 [4] 皮锦红,杨晓敏. 应用前景广阔的高熵合金[J]. 新材料产业,2009(9):71-74. doi: 10.3969/j.issn.1008-892X.2009.09.019PI J H,YANG X M. High-entropy alloy with broad application prospects[J]. Advanced Materials Industry,2009(9):71-74. doi: 10.3969/j.issn.1008-892X.2009.09.019 [5] 刘源,李言祥,陈祥,等. 多主元高熵合金研究进展[J]. 材料导报,2006,20(4):4-6. doi: 10.3321/j.issn:1005-023X.2006.04.002LIU Y,LI Y X,CHEN X,et al. High entropy alloy with multi principal elements-state of the art[J]. Material Reports,2006,20(4):4-6. doi: 10.3321/j.issn:1005-023X.2006.04.002 [6] ZHANG Y,ZUO T T,TANG Z,et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science,2014(61):1-93. [7] LI J C,MENG X C,WAN L,et al. Welding of high entropy alloys: Progresses, challenges and perspectives [J]. Journal of Manufacturing Processes ,2021,68:293-331. doi: 10.1016/j.jmapro.2021.05.042 [8] PALGUNA Y,RAJESH KANNAN A,SAIRAM K,et al. Microstructure and mechanical properties of wrought Al0.2CoCrFeNiMo0.5 high entropy alloy using gas tungsten arc welding process[J]. Materials Letters,2022,317:132109. doi: 10.1016/j.matlet.2022.132109 [9] WU Z,DAVID S A,FENG Z,et al. Weldability of a high entropy CrMnFeCoNi alloy[J]. Scripta Materialia,2016(124):81-85. [10] WU Z,DAVID S A,LEONARD D N,et al. Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy[J]. Science and Technology of Welding and Joining,2018,23(7):585-595. doi: 10.1080/13621718.2018.1430114 [11] KASHAEV N,VENTZKE V,PETROV N,et al. Fatigue behavior of a laser beam welded CoCrFeNiMn-type high entropy alloy[J]. Materials Science & Engineering A,2019(766):138358. [12] CHEN Z,WANG B F,DUAN B H,et al. Mechanical properties and microstructure of laser welded FeCoNiCrMn high-entropy alloy[J]. Materials Letters,2020(262):127060. [13] ZHANG M N,WANG D F,HE L J,et al. Laser beam welding of AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Materials Letters,2022,308:131137. doi: 10.1016/j.matlet.2021.131137 [14] LI P,SUN H T,DONG H G,et al. Microstructural evolution, bonding mechanism and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy joint fabricated via diffusion bonding[J]. Materials Science and Engineering:A,2021,814:141211. doi: 10.1016/j.msea.2021.141211 [15] LI H X,SHEN W J,CHEN W J,et al. Microstructural evolution and mechanical properties of AlCoCrFeNi high-entropy alloy joints brazed using a novel Ni-based filler[J]. Journal of Alloys and Compounds,2021,860:157926. doi: 10.1016/j.jallcom.2020.157926 [16] ZHU Z G,SUN Y F,GOH M H,et al. Friction stir welding of a CoCrFeNiAl0.3 high entropy alloy[J]. Materials Letters,2017(205):142-144. [17] LIN P T,LIU H C,HSIEH P Y,et al. Heterogeneous structure-induced strength-ductility synergy by partial recrystallization during friction stir welding of a high-entropy alloy[J]. Materials & Design,2021,197:109238. [18] SOKKALINGAM R,MASTANAIAH P,MUTHU-PANDI V,et al. Electron-beam welding of high-entropy alloy and stainless steel: microstructure and mechanical properties[J]. Materials and Manufacturing Processes,2020,35(16):1885-1894. doi: 10.1080/10426914.2020.1802045 [19] SOKKALINGAM R,VEERAPPAN M,SIVAPRASAD K,et al. Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel[J]. Journal of Materials Research,2019,34(15):1-12. [20] OLIVEIRA J P,SHEN J J,ZENG Z,et al. Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel[J]. Scripta Materialia,2022,206:114219. doi: 10.1016/j.scriptamat.2021.114219 [21] WANG B F,PENG H,CHEN Z. Microstructure and mechanical properties of a laser welded Ti-6Al-4V titanium alloy/FeCoNiCrMn high entropy alloy with a Cu filler layer[J]. Journal of Materials Research and Technology,2021,12:1970-1978. doi: 10.1016/j.jmrt.2021.04.010 [22] DU Y J,XIONG J T,JIN F,et al. Microstructure evolution and mechanical properties of diffusion bonding Al5(TiZrHfNb)95 refractory high entropy alloy to Ti2AlNb alloy[J]. Materials Science and Engineering:A,2021,802:140610. doi: 10.1016/j.msea.2020.140610 [23] LI S W,LI J L,SHI J M,et al. Microstructure and mechanical properties of the brazed region in the AlCoCrFeNi high-entropy alloy and FGH98 superalloy joint[J]. Materials Science and Engineering:A,2021,804:140714. doi: 10.1016/j.msea.2020.140714 [24] NENE S S,GUPTA S,MORPHEW C,et al. Friction stir butt welding of a high strength Al-7050 alloy with a metastable transformative high entropy alloy[J]. Materialia,2020:100740. [25] DO H,ASADI S,PARK N. Microstructural and mechanical properties of dissimilar friction stir welded CoCrFeMnNi high entropy alloy to STS304 stainless steel[J]. Materials Science and Engineering:A,2022,840:142979. doi: 10.1016/j.msea.2022.142979 [26] 冯吉才,王廷,张秉刚,等. 异种材料真空电子束焊接研究现状分析[J]. 焊接学报,2009(10):108-112.FENG J C,WANG T,ZHANG B G,et al. Research status analysis of electron beam welding for joining of dissimilar materials[J]. Transactions of the China Welding Institution,2009(10):108-112. [27] LIU L,REN D,LIU F. A review of dissimilar welding techniques for magnesium alloys to aluminum alloys[J]. Materials,2014,7(5):3735-3757. doi: 10.3390/ma7053735 [28] HAMED A S,MAHMOUD S K,AZADEH N B,et al. Dissimilar resistance spot welding of 6061-T6 aluminum alloy/St-12 carbon steel using a high entropy alloy interlayer[J]. Intermetallics,2020,124:106876. doi: 10.1016/j.intermet.2020.106876 [29] LIU D J,WANG J,XU M B,et al. Evaluation of dissimilar metal joining of aluminum alloy to stainless steel using the filler metals with a high-entropy design[J]. Journal of Manufacturing Processes,2020,58:500-509. doi: 10.1016/j.jmapro.2020.08.031 [30] LIU D J,GUO R,HU Y,et al. Dissimilar metal joining of 304 stainless steel to SMA490BW steel using the filler metal powders with a high-entropy design[J]. Metals and Materials International,2020,26(6):854-866. doi: 10.1007/s12540-019-00400-5 [31] LIU D J,GUO R,HU Y,et al. Effects of the elemental composition of high-entropy filler metals on the mechanical properties of dissimilar metal joints between stainless steel and low carbon steel[J]. Journal of Materials Research and Technology,2020,9(5):11453-11463. doi: 10.1016/j.jmrt.2020.08.028 [32] GU X Y,ZHANG L H. Laser lap welding of TC4 titanium alloy to 6082 aluminum alloy using a CoNiCuNb0.5 V1.5 high entropy alloy filler[J]. Materials Letters,2022,312:131562. doi: 10.1016/j.matlet.2021.131562 [33] 贾晨. 焊接铝/铜用高熵合金钎料的研究[D]. 西安: 西安理工大学, 2011.JIA C. Research on high entropy alloy fillers used for brazing aluminum and copper[D]. Xi’an: Xi’an University of Technology, 2011. [34] 朱艳,党振乾,王永东. 铝铜连接的感应钎焊工艺[J]. 黑龙江科技学院学报,2010(2):127-130.ZHU Y,DANG Z Q,WANG Y D. Technical study on induction razing of Al to copper[J]. Journal of Heilongjiang Institute of Science & Technology,2010(2):127-130. [35] DING W,LIU N,FAN J C,et al. Diffusion bonding of copper to titanium using CoCrFeMnNi high-entropy alloy interlayer[J]. Intermetallics,2021,129:107027. doi: 10.1016/j.intermet.2020.107027 [36] ZHANG L X,SHI J M,LI H W,et al. Interfacial microstructure and mechanical properties of ZrB2-SiC-C ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy[J]. Materials & Design,2016(97):230-238. [37] WANG G,YANG Y L,HE R J,et al. A novel high entropy CoFeCrNiCu alloy filler to braze SiC ceramics[J]. Journal of the European Ceramic Society,2020(40):3391-3398. [38] WANG G,YANG Y L,WANG M,et al. Brazing ZrB2-SiC ceramics to Nb with a novel CoFeNiCrCu high-entropy alloy[J]. Journal of the European Ceramic Society,2021(41):54-61. [39] SVENSSON D O. High Entropy Alloys: Breakthrough Materials for Aero Engine Applications[J]. Goteborg: Chalmers University of Technology, 2015. [40] YEH J W. Recent progress in high entropy alloys[J]. Annales De Chimie-Science des Materiaux,2006,31(6):633-648. doi: 10.3166/acsm.31.633-648 [41] JOHANSSON K,KIEKEHR L,FRITZE S,et al. Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition[J]. Surface and Coatings Technology,2018(349):529-539. [42] YU W,LI W,LIU P,et al. Silicon-content-dependent microstructures and mechanical behavior of (AlCrTiZrMo)-Si x-N high-entropy alloy nitride films[J]. Materials & Design,2021(203):109553. [43] WANG C M,YU J X,ZHANG Y,et al. Phase evolution and solidification cracking sensibility in laser remelting treatment of the plasma-sprayed CrMuFeCoNi high entropy alloy coating[J]. Materials and Design,2019(182):108040. [44] CHEN L J,KIRSTEN B,ZHOU Z,et al. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures[J]. Surface & coatings Technology,2019(358):215-222. [45] 李相阳,朱红梅. 激光熔覆制备高熵合金涂层的研究进展[J]. 热加工工艺,2016,45(22):19-23. doi: 10.14158/j.cnki.1001-3814.2016.22.005LI X Y,ZHU H M. Research progress of high entropy alloy coating prepared by laser cladding[J]. Hot Working Technology,2016,45(22):19-23. doi: 10.14158/j.cnki.1001-3814.2016.22.005 [46] 李亚江. 焊接组织性能与质量控制[M]. 北京: 化学工业出版社, 2005.LI Y J. Welding structure performance and quality control[M]. Beijing: Chemical Industry Press, 2005. [47] 霍文燚,时海芳,张竞元. 熔覆电流对AlCrFeCoNiCu高熵合金涂层显微组织的影响[J]. 金属热处理,2014(8):24-27. doi: 10.13251/j.issn.0254-6051.2014.08.006HUO W Y,SHI H F,ZHANG J Y. Effect of cladding current on microstructure of AlCrFeCoNiCu high-entropy alloy coating by argon arc cladding[J]. Heat Treatment of Metals,2014(8):24-27. doi: 10.13251/j.issn.0254-6051.2014.08.006 [48] HUO W, SHI H, REN X, et al. Microstructure and wear behavior of CoCrFeMnNbNi high-entropy alloy coating by TIG cladding[J]. Advances in Materials Science and Engineering, 2015(1):1-5. [49] FAN Q K,CHEN C,FAN C L,et al. Effect of high Fe content on the microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy coatings prepared by gas tungsten arc cladding[J]. Surface and Coatings Technology,2021(418):127242. [50] FAN Q K,CHEN C,FAN C L,et al. Ultrasonic suppression of element segregation in gas tungsten arc cladding AlCoCuFeNi high-entropy alloy coatings[J]. Surface and Coatings Technology,2021(420):127364. [51] CHENG J B,LIANG X B,XU B S. Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coating[J]. Surface and Coatings Technology,2014(240):184-190. [52] LU J B,WANG B F,QIU X K,et al. Microstructure evolution and properties of CrCuFe xNiTi high-entropy alloy coating by plasma cladding on Q235[J]. Surface and Coatings Technology,2017(328):313-318. [53] WANG J Y,ZHANG B S,YUY Q,et al. Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding[J]. Surface and Coatings Technology,2020 (384):125337. [54] PENG Y B,ZHANG W,LI T C,et al. Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding[J]. Surface and Coatings Technology,2020(385):125326. [55] JIANG H,HAN K M,LI D Y,et al. Synthesis and characterization of AlCoCrFeNiNb x high-entropy alloy coatings by laser cladding[J]. Crystals,2019(9):56. [56] ZHANG Y,HAN T F,XIAO M,et al. Effect of Nb content on microstructure and properties of laser cladding FeNiCoCrTi0.5Nb x high-entropy alloy coating[J]. Optik,2019(198):163316. [57] WANG H L,LIU Q B,GUO Y X,et al. MoFe1.5CrTiWAlNb x refractory high-entropy alloy coating fabricated by laser cladding[J]. Intermetallics,2019(115):106613. [58] CUI Y,SHEN J Q,MANLADAN S M,et al. Wear resistance of FeCoCrNiMnAl x high-entropy alloy coatings at high temperature[J]. Applied Surface Science,2020 (512):145736. [59] GU Z,XI S Q,MAO P,et al. Microstructure and wear behavior of mechanically alloyed powder Al xMo0.5NbFeTiMn2 high entropy alloy coating formed by laser cladding[J]. Surface and Coatings Technology,2020(401):126244. [60] ZHAO P,LI J,LEI R Y,B. et al. Investigation into microstructure, wear resistance in air and NaCl solution of AlCrCoNiFeCTa x high-entropy alloy coatings fabricated by laser cladding[J]. Coatings,2021(11):358. [61] PENG Y B,ZHANG W,LI T C,et al. Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding[J]. International Journal of Refractory Metals and Hard Materials,2019(84):105044. [62] LI X F,FENG Y H,LIU B,et al. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding[J]. Journal of Alloys and Compounds,2019(788):485-494. [63] GUO Y J,LI C G,ZENG M,et al. In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding[J]. Materials Chemistry and Physics,2020(242):122522. [64] 黄元盛,温立哲. 退火处理对Al3CoCrCu1/2FeMoNiTi高熵合金激光涂层组织和性能的影响[J]. 表面技术,2016,45(7):162-166.HUANG Y S,WEN L Z. Effect of Annealing on the microstructure and property of Al3CoCrCu1/2FeMoNiTi high-entropy alloy laser coating[J]. Surface Technology,2016,45(7):162-166. [65] LIU H,LIU J,LI X,et al. Effect of heat treatment on phase stability and wear behavior of laser clad AlCoCrFe-NiTi0.8 high-entropy alloy coatings[J]. Surface and Coatings Technology,2020(392):125758. [66] SHEN Q,LI Y,ZHAO J,et al. Effects of annealing on the microstructure and wear resistance of laser cladding CrFeMoNbTiW high-entropy alloy coating[J]. Crystals,2021(11):1096. [67] JIANG Y Q,LI J,JUAN Y F,et al. Evolution in microstructure and corrosion behavior of AlCoCr xFeNi high-entropy alloy coatings fabricated by laser cladding[J]. Journal of Alloys and Compounds,2019(775):1-14. [68] GU Z,MAO P,GOU Y F,et al. Microstructure and properties of MgMoNbFeTi2Y x high entropy alloy coatings by laser cladding[J]. Surface and Coatings Technology,2020(402):126303. [69] LI Y Z,SHI Y. Microhardness, wear resistance, and corrosion resistance of Al xCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding[J]. Optics & Laser Technology,2021(134):106632. [70] 宋继军. FeCoNiCrxAl激光熔覆层的组织与性能研究[D]. 济南: 山东大学, 2020.SONG J J. Study on the microstructure and properties of FeCoNiCrxAl laser cladding coating[D]. Jinan: Shandong University, 2020. [71] WANG W R,QI W,ZHANG X L,et al. Superior corrosion resistance-dependent laser energy density in (CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding[J]. International Journal of Minerals, Metallurgy and Materials,2021(28):888-897. [72] 邱星武,刘春阁. 激光加工参数对Al2CoCrCuFeNiTi高熵合金涂层质量的影响[J]. 粉末冶金材料科学与工程,2015(1):59-64. doi: 10.3969/j.issn.1673-0224.2015.01.010QIU X W,LIU C G. Effect of laser processing parameters on quality of Al2CoCrCuFeNiTi high-entropy alloys coating[J]. Materials Science and Engineering of Powder Metallurgy,2015(1):59-64. doi: 10.3969/j.issn.1673-0224.2015.01.010 [73] CUI Z Q,QIN Z,DONG P,et al. Microstructure and corrosion properties of FeCoNiCrMn high entropy alloy coatings prepared by high speed laser cladding and ultrasonic surface mechanical rolling treatment[J]. Materials Letters,2020(259):126769. [74] WAN H X,SONG D D,SHI X L,et al. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment[J]. Journal of Materials Science & Technology,2021(60):197-205. [75] HUANG C,ZHANG Y,SHEN J,et al. Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V alloy[J]. Surface and Coatings Technology,2011,206(6):1389-1395. doi: 10.1016/j.surfcoat.2011.08.063 [76] CHEN L,WANG Y Y,HAO X H,et al. Lightweight refractory high entropy alloy coating by laser cladding on Ti-6Al-4V surface[J]. Vacuum,2020(183):109823. [77] 谢红波,刘贵仲,郭景杰,等. 添加Al对Al xFeCrCoCuTi高熵合金组织与高温氧化性能的影响[J]. 稀有金属,2016,40(4):315-321.XIE H B,LIU G Z,GUO J J,et al. Microstrcture and high temperature oxidation properties of AlxFeCrCoCuTi high-entropy alloy with different Al contents[J]. Chinese Journal of Rare Metals,2016,40(4):315-321. [78] 张冲,黄标,戴品强. 铬含量对FeCoCr xNiB高熵合金涂层氧化行为的影响[J]. 中国表面工程,2016,29(1):32-38. doi: 10.11933/j.issn.1007-9289.2016.01.005ZHANG C,HUANG B,DAI P Q. Effects of chromium content on oxidation behavior of FeCoCrxNiB high-entropy alloy coatings[J]. China Surface Engineering,2016,29(1):32-38. doi: 10.11933/j.issn.1007-9289.2016.01.005 [79] 张璐璐. 激光熔覆AlMoNbV基高熵合金涂层的微观组织和高温抗氧化性能[D]. 昆明: 昆明理工大学, 2019.ZHANG L L. Microstructure and high temperature oxidation resistance of AlMoNbV-based high-entropy alloy coating by laser cladding[D]. Kunming: Kunming University of Science and Technology, 2019. [80] 马旻昱. 激光熔覆抗氧化耐磨CoCrFeNbNi系高熵合金涂层的研究[D]. 北京: 北京科技大学, 2021.MA M Y. Research on CoCrFeNbNi high entropy alloys coating with anti-oxidation and wear resistance by laser cladding[D]. Beijing: University of Science and Technology Beijing, 2021. [81] ZHANG H,PAN Y,HE Y,et al. Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding[J]. Applied Surface Science,2011,257(6):2259-2263. doi: 10.1016/j.apsusc.2010.09.084 -