Effect of ZrO2 nanopaticle content on corrosion resistance of micro-arc oxidation coating on AZ91D magnesium alloy
-
摘要: 为了提高AZ91D镁合金的耐蚀性能,利用单极性脉冲电源制备具有不同ZrO2纳米颗粒含量的微弧氧化膜层,研究纳米ZrO2颗粒对AZ91D镁合金微弧氧化膜层耐蚀性的影响。采用扫描电子显微镜观察复合膜层的表面及截面形貌;同时利用X射线衍射仪分析不同ZrO2纳米颗粒含量的膜层中的相组成;测试样品的电化学腐蚀性能。结果表明:当电解液中加入1 g/L ZrO2颗粒时,纳米ZrO2颗粒能够渗入微弧氧化膜层之中,封闭膜中原有的微孔和微裂纹等缺陷,膜层表面质量较好;随着电解液中ZrO2颗粒含量由2 g/L增加到3 g/L时,膜层的裂纹明显增多,导致腐蚀介质容易进入膜层发生腐蚀,耐蚀性能下降;在电解液中添加纳米ZrO2颗粒时,1~3 g/L范围内添加1 g/L ZrO2纳米颗粒的微弧氧化膜层的耐蚀性能最好。Abstract: In order to improve the corrosion resistance of AZ91D magnesium alloy, micro-arc oxidation coatings with different ZrO2 nanoparticle contents were prepared by unipolar pulse power supply, and the effect of nano ZrO2 particles on the corrosion resistance of AZ91D magnesium alloy micro-arc oxidation coatings was studied. Scanning electron microscope was used to observe the surface and cross-sectional morphology of the composite films, meanwhile, X-ray diffractometer was used to analyze the phase composition of films with different contents of ZrO2 nanoparticles. The prepared samples were then tested for electrochemical corrosion performance. The results show that when the content of 1 g/L ZrO2 particles is added to the electrolyte, the nano ZrO2 particles can penetrate into the micro-arc oxidation film layer to close the original defects such as micropores and microcracks, and the surface quality of the film layer is good. When the content of ZrO2 particles in the coating layer is increased from 2 g/L to 3 g/L, the crack formation of the coating layer is obviously enhanced, which makes it easier for the corrosive medium to enter the coating layer, so that corrosion is more likely to occur, and the corrosion resistance performance decreases. Therefore, when the content of nano-ZrO2 particles added to the electrolyte is in the range of 1-3 g/L, the corrosion resistance of the micro-arc oxidation film layer with 1 g/L ZrO2 nanoparticles is the best.
-
Key words:
- micro-arc oxidation /
- ZrO2 nanoparticle /
- AZ91D Mg alloy /
- XRD spectrum /
- corrosion resistance /
- polarization curve /
- AC impedence
-
表 1 AZ91D镁合金的化学成分(质量分数/ %)
Table 1. Chemical composition of AZ91D magnesium alloy (mass fraction/%)
Al Zn Mn Si Cu Mg 8.50-9.50 0.45-0.90 0.17-0.4 ≤0.05 ≤0.025 Bal 表 2 微弧氧化膜表面主要元素的相对含量(原子分数/%)
Table 2. Relative contents of main elements on surface of coating by EDS analysis (atom fraction/%)
Content of ZrO2/ (g·L−1) Zr Mg Si O Na 0 — 28.23 6.77 64.23 0.77 1.0 1.44 26.63 7.91 63.16 0.87 2.0 1.67 28.76 5.86 62.62 1.09 3.0 2.20 27.27 5.79 63.78 0.97 表 3 4种微弧氧化膜层的极化曲线参数
Table 3. Potentiodynamic polarization parameters of four kinds of coating
ZrO2 content/(g·L−1) Ec/
mVic/
(μA•cm−2)βa/
(mV•dec−1)βc/
(mV•dec−1)Rp/
(kΩ•cm2)0 −1512.37 0.48 130.9 −147.1 62.12 1 −1292.46 2.91×10−5 213.9 −331.1 1.9×106 2 −1397.05 1.2×10−2 225.6 −48.6 1.3×103 3 −1697.31 0.12 103.2 −89.8 180.84 表 4 不同ZrO2颗粒含量电解液中形成的微弧氧化膜层等效电路的拟合数据
Table 4. EIS fitting of MAO coatings prepared from the electrolyte with different ZrO2 contents
ZrO2 content/(g·L−1) Rs/(Ω·cm−2) Qp/(F·cm−2) Rp/(Ω·cm−2) Qb/(F·cm−2) Rb/(Ω·cm−2) 0 122.7 1.283×10−5 56.44 2.534×10−5 482.4 1 45.78 1.244×10−7 6.798×104 6.304 ×10−6 3.451×105 2 12.59 2.204×10−7 5045 4.504 ×10−7 7.423×104 3 84.83 7.235×10−6 516.5 7.295 ×10−6 7224 -
[1] 马建基. Zr 盐体系下镁合金微弧氧化黑色膜层的制备及耐蚀性研究[D]. 西安: 长安大学, 2021.MA J J. Preparation and corrosion resistance of black film of micro-arc oxidation of magnesium alloy under zirconium salt system[D]. Xi’an: Changan University, 2021. [2] 付玲霞. AZ31镁合金含氟微弧氧化膜的制备及表征[D]. 兰州: 兰州大学, 2017.FU L X. Preparation and characterization of fluoride-incorporated plasma electrolytic oxidation coatings on the AZ31 magnesium alloy[D]. Lanzhou: Lanzhou University, 2017. [3] 李雄伟,刘万辉. 电解液体系对AZ91D镁合金微弧氧化膜层的影响[J]. 热加工工艺,2019,48(10):145-147.LI X W,LIU W H. Influence of electrolytic liquid system on micro-arc oxidation film of AZ91D magnesium alloy[J]. Hot Working Technology,2019,48(10):145-147. [4] 李娜. 铝、镁合金微弧氧化层表面ZrO2光化学溶胶凝封孔层的制备及耐蚀性研究[D]. 西安: 西安理工大学, 2019.LI N. Photochemical preparation and corrosion resistance of ZrO2 SOL-GEL sealing layer on MAO coating of aluminum and magnesium alloy[D]. Xi’an: Xi’an University of Technology, 2019. [5] 孙乐. 镁表面等离子电解渗与微弧氧化复合膜的制备及其耐蚀性研究[D]. 兰州: 兰州理工大学, 2021.SUN L. Fabrication and corrosion resistance of hybrid coatings formed by combining plasma electrolytic saturation with micro-arc oxidation on magnesium substrates[D]. Lanzhou: Lanzhou University of Technology, 2021. [6] 蒋世权,吴方. 镁合金表面微弧氧化/自组装复合膜的耐蚀性能[J]. 表面技术,2021,50(4):294-303.JIANG S Q,WU F. Corrosion resistance of micro-arc oxidation/self-assembled composite coating on magnesium alloy[J]. Surface Technology,2021,50(4):294-303. [7] 李雨晴. 镁合金表面微弧氧化复合涂层的制备及耐蚀性研究[D]. 桂林: 桂林理工大学, 2021.LI Y Q. Preparation and corrosion resistance of micro-arc oxidation composite on magnesium alloy surface[D]. Guilin: Guilin university of technology, 2021. [8] 廖燚钊,薛文斌,万旭敏. 放电发光谱在金属微弧氧化表面处理中的应用研究进展[J]. 航空材料学报,2021,41(2):32-44. doi: 10.11868/j.issn.1005-5053.2020.000137LI Y Z,XUE W B,WAN X M. Research progress in the application of optical emission spectroscopy in metal microarc oxidation surface treatment[J]. Journal of Aeronautical Materials,2021,41(2):32-44. doi: 10.11868/j.issn.1005-5053.2020.000137 [9] 师晓婷,朱园园. AZ31B镁合金表面含钛涂层的制备及耐蚀性[J]. 航空材料学报,2019,39(1):17-25.SHI X T,LI Y Y. Preparation and corrosion resistance of titanium-containing coating on AZ31B magnesium alloy[J]. Journal of Aeronautical Materials,2019,39(1):17-25. [10] 余灏勋,马廷霞. 镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能[J]. 功能材料,2021,52(1):1022-1025. doi: 10.3969/j.issn.1001-9731.2021.01.004YU H X,MA T X. Preparation and corrosion resistance of micro-arc oxidation ceramic coatings on magnesium alloys[J]. Journal of Functional Materials,2021,52(1):1022-1025. doi: 10.3969/j.issn.1001-9731.2021.01.004 [11] 朱宏达,管秀荣. 镁合金淡黄色微弧氧化膜的制备及性能研究[J]. 电镀与环保,2019,39(6):58-60. doi: 10.3969/j.issn.1000-4742.2019.06.019ZHU H D,GUAN X R. Preparation and properties of light-yellow micro-arc oxidation coating on magnesium alloy[J]. Electroplating & Pollution Control,2019,39(6):58-60. doi: 10.3969/j.issn.1000-4742.2019.06.019 [12] TANG H,ZHU B,HE L. Growth process and dielectric breakdown of micro arc oxidation coating on AZ31 Mg alloy pretreated by alkali treatment[J]. Prot Met Phys Chem,2020,56(1):156-163. doi: 10.1134/S2070205120010244 [13] 巩锐,候步逸. 镁合金微弧氧化表面处理技术研究进展及展望[J]. 金属世界,2020,4:8-18. doi: 10.3969/j.issn.1000-6826.2020.06.003GONG R,HOU B Y. Research progress and prospect of micro arc oxidation surface treatment technology for magnesium alloys[J]. Metal World,2020,4:8-18. doi: 10.3969/j.issn.1000-6826.2020.06.003 [14] 陈宏,王成成. 镁合金微弧氧化的研究现状[J]. 表面技术,2019,48(7):49-60.CHEN H,WANG C C. Research status of micro-arc oxidation of magnesium alloy[J]. Surface Technology,2019,48(7):49-60. [15] QIAN B Y,MIAO W. Influence of voltage on the corrosion and wear resistance of micro-arc oxidation coating on Mg-8Li-2Ca alloy[J]. Acta Metall Sin Engl,2019,32(2):194-204. doi: 10.1007/s40195-018-0845-y [16] 安凌云,常成功. 镁合金微弧氧化膜在三种饱和盐溶液中耐蚀性研究[J]. 材料导报,2023,37(7):21070250.AN L Y,CHANG C G. Study on corrosion resistance of micro-arc oxidation modified magnesium alloy in three kinds of saturated salt solutions[J]. Materials Reports,2023,37(7):21070250. [17] 付景国,刘建,朱新河,等. 微纳米颗粒在制备微弧氧化复合膜层中的影响研究现状[J]. 热加工工艺,2020,49(2):12-19. doi: 10.14158/j.cnki.1001-3814.20183919FU J G,LIU J,ZHU X H,et al. Research status of influence of micro-nano particles in preparation of micro-arc oxidation composite layer[J]. Hot Working Technology,2020,49(2):12-19. doi: 10.14158/j.cnki.1001-3814.20183919 [18] 王志虎. 镁合金微弧氧化陶瓷层表面耐蚀/导电涂层的制备及性能表征[D]. 西安: 西安理工大学, 2021.WANG Z H. Preparation and characterization of corrosion resistant/conductive coatings on the surface of micro-arc oxidation coated magnesium alloy[D]. Xi’an: Xi’an University of Technology, 2021. [19] 曾云. 镁及镁合金表面含碳微弧氧化陶瓷层性能的研究[D]. 北京: 北京化工大学, 2016.ZENG Y. Properties research of coating carbon micro-arc oxidation ceramic coating on pure Mg and Mg alloy[D]. Beijing: Beijing University of Chemical Technology, 2016. [20] ZHU J Y,JIA H J. Improvement on corrosion resistance of micro-arc oxidized AZ91D magnesium alloy by a pore-sealing coating[J]. Journal of Alloys and Compounds,2021,889:161460. doi: 10.1016/j.jallcom.2021.161460 [21] YANG W,XU D P. Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy[J]. Corrosion Science,2018,136:174-179. doi: 10.1016/j.corsci.2018.03.004 [22] BAI J Y,LI S Z. Preparation and characterization of black micro-arc oxidation films[J]. Acta Physico-Chimica Sinica,2016,32(9):2271-2279. doi: 10.3866/PKU.WHXB201606071 [23] WANG C G,WU L P. Electrochemical noise analysis on the pit corrosion susceptibility of biodegradable AZ31 magnesium alloy in four types of simulated body solutions[J]. Journal of Materials Science Technology,2018,11(2):1876-1884. [24] 李忠盛, 吴护林, 丁星星. AZ80镁合金表面冷喷涂铝/微弧氧化复合涂层耐蚀性能[J]. 材料工程, 2021, 49(12): 57-64.LI Z S, WU H L, DING X X. Corrosion resistance of cold sprayed aluminum/micro-arc oxidation composite coating on AZ80 magnesium alloy. [25] 车广东,刘向东. 镁合金表面微弧氧化放电现象及氧化膜特性分析[J]. 稀有金属材料工程,2015,44(4):897-900.CHE G D,LIU X D. Discharge phenomenon of micro-arc oxidation on magnesium alloy surface and analysis of oxide film characteristics[J]. Rare Metal Materials and Engineering,2015,44(4):897-900. -