ZrO2纳米颗粒含量对AZ91D镁合金微弧氧化膜耐蚀性的影响

孟令飞 张春华 张松 张伟

孟令飞, 张春华, 张松, 张伟. ZrO2纳米颗粒含量对AZ91D镁合金微弧氧化膜耐蚀性的影响[J]. 航空材料学报, 2023, 43(1): 98-104. doi: 10.11868/j.issn.1005-5053.2022.000048
引用本文: 孟令飞, 张春华, 张松, 张伟. ZrO2纳米颗粒含量对AZ91D镁合金微弧氧化膜耐蚀性的影响[J]. 航空材料学报, 2023, 43(1): 98-104. doi: 10.11868/j.issn.1005-5053.2022.000048
MENG Lingfei, ZHANG Chunhua, ZHANG Song, ZHANG Wei. Effect of ZrO2 nanopaticle content on corrosion resistance of micro-arc oxidation coating on AZ91D magnesium alloy[J]. Journal of Aeronautical Materials, 2023, 43(1): 98-104. doi: 10.11868/j.issn.1005-5053.2022.000048
Citation: MENG Lingfei, ZHANG Chunhua, ZHANG Song, ZHANG Wei. Effect of ZrO2 nanopaticle content on corrosion resistance of micro-arc oxidation coating on AZ91D magnesium alloy[J]. Journal of Aeronautical Materials, 2023, 43(1): 98-104. doi: 10.11868/j.issn.1005-5053.2022.000048

ZrO2纳米颗粒含量对AZ91D镁合金微弧氧化膜耐蚀性的影响

doi: 10.11868/j.issn.1005-5053.2022.000048
详细信息
    通讯作者:

    张春华(1963—),男,博士,教授,博导,研究方向为材料表面工程,联系地址:辽宁省沈阳市铁西区经济技术开发区沈辽西路111号沈阳工业大学材料科学与工程学院(110870),E-mail:zhangch5858@126.com

  • 中图分类号: TG174.411

Effect of ZrO2 nanopaticle content on corrosion resistance of micro-arc oxidation coating on AZ91D magnesium alloy

  • 摘要: 为了提高AZ91D镁合金的耐蚀性能,利用单极性脉冲电源制备具有不同ZrO2纳米颗粒含量的微弧氧化膜层,研究纳米ZrO2颗粒对AZ91D镁合金微弧氧化膜层耐蚀性的影响。采用扫描电子显微镜观察复合膜层的表面及截面形貌;同时利用X射线衍射仪分析不同ZrO2纳米颗粒含量的膜层中的相组成;测试样品的电化学腐蚀性能。结果表明:当电解液中加入1 g/L ZrO2颗粒时,纳米ZrO2颗粒能够渗入微弧氧化膜层之中,封闭膜中原有的微孔和微裂纹等缺陷,膜层表面质量较好;随着电解液中ZrO2颗粒含量由2 g/L增加到3 g/L时,膜层的裂纹明显增多,导致腐蚀介质容易进入膜层发生腐蚀,耐蚀性能下降;在电解液中添加纳米ZrO2颗粒时,1~3 g/L范围内添加1 g/L ZrO2纳米颗粒的微弧氧化膜层的耐蚀性能最好。

     

  • 图  1  不同ZrO2颗粒含量电解液中形成的微弧氧化膜的XRD谱图

    Figure  1.  XRD patterns of MAO coatings prepared from the electrolyte with different contents of ZrO2

    图  2  不同ZrO2颗粒含量电解液中形成的微弧氧化膜层的表面形貌  (a)0 g/L;(b)1 g/L; (c)2 g/L;(d);3 g/L

    Figure  2.  Surface morphologies of MAO coatings prepared from electrolyte with different ZrO2 contents   (a) 0 g/L; (b)1 g/ L;(c) 2 g/L;(d) 3 g/L

    图  3  不同ZrO2颗粒含量电解液中形成的微弧氧化膜层的截面形貌  (a)0 g/L; (b)1 g/L; (c)2 g/L;(d)3 g/L

    Figure  3.  Cross section morphologies of MAO coatings prepared from the electrolyte with different ZrO2 contents   (a) 0 g/L;(b)1 g/ L;(c) 2 g/L;(d) 3 g/L

    图  4  不同ZrO2颗粒含量电解液中形成的微弧氧化膜层的动电位极化曲线

    Figure  4.  Potentiodynamic polarization curves of MAO coatings prepared from the electrolyte with different ZrO2 contents

    图  5  不同ZrO2颗粒含量电解液中形成的微弧氧化膜层的电化学阻抗谱图

    Figure  5.  Nyquist plots of MAO coatings prepared from the electrolyte with different ZrO2 contents

    图  6  微弧氧化膜层的等效电路图

    Figure  6.  Equivalent circuit model of coatings different ZrO2 contents

    表  1  AZ91D镁合金的化学成分(质量分数/ %)

    Table  1.   Chemical composition of AZ91D magnesium alloy (mass fraction/%)

    AlZnMnSiCuMg
    8.50-9.500.45-0.900.17-0.4≤0.05≤0.025Bal
    下载: 导出CSV

    表  2  微弧氧化膜表面主要元素的相对含量(原子分数/%)

    Table  2.   Relative contents of main elements on surface of coating by EDS analysis (atom fraction/%)

    Content of ZrO2/ (g·L−1)ZrMgSiONa
    028.236.7764.230.77
    1.01.4426.637.9163.160.87
    2.01.6728.765.8662.621.09
    3.02.2027.275.7963.780.97
    下载: 导出CSV

    表  3  4种微弧氧化膜层的极化曲线参数

    Table  3.   Potentiodynamic polarization parameters of four kinds of coating

    ZrO2 content/(g·L−1)Ec/
    mV
    ic/
    (μA•cm−2)
    βa/
    (mV•dec−1)
    βc/
    (mV•dec−1)
    Rp/
    (kΩ•cm2)
    0−1512.370.48130.9−147.162.12
    1−1292.462.91×10−5213.9−331.11.9×106
    2−1397.051.2×10−2225.6−48.61.3×103
    3−1697.310.12103.2−89.8180.84
    下载: 导出CSV

    表  4  不同ZrO2颗粒含量电解液中形成的微弧氧化膜层等效电路的拟合数据

    Table  4.   EIS fitting of MAO coatings prepared from the electrolyte with different ZrO2 contents

    ZrO2 content/(g·L−1)Rs/(Ω·cm−2)Qp/(F·cm−2)Rp/(Ω·cm−2)Qb/(F·cm−2)Rb/(Ω·cm−2)
    0122.71.283×10−556.442.534×10−5482.4
    145.781.244×10−76.798×1046.304 ×10−63.451×105
    212.592.204×10−750454.504 ×10−77.423×104
    384.837.235×10−6516.57.295 ×10−67224
    下载: 导出CSV
  • [1] 马建基. Zr 盐体系下镁合金微弧氧化黑色膜层的制备及耐蚀性研究[D]. 西安: 长安大学, 2021.

    MA J J. Preparation and corrosion resistance of black film of micro-arc oxidation of magnesium alloy under zirconium salt system[D]. Xi’an: Changan University, 2021.
    [2] 付玲霞. AZ31镁合金含氟微弧氧化膜的制备及表征[D]. 兰州: 兰州大学, 2017.

    FU L X. Preparation and characterization of fluoride-incorporated plasma electrolytic oxidation coatings on the AZ31 magnesium alloy[D]. Lanzhou: Lanzhou University, 2017.
    [3] 李雄伟,刘万辉. 电解液体系对AZ91D镁合金微弧氧化膜层的影响[J]. 热加工工艺,2019,48(10):145-147.

    LI X W,LIU W H. Influence of electrolytic liquid system on micro-arc oxidation film of AZ91D magnesium alloy[J]. Hot Working Technology,2019,48(10):145-147.
    [4] 李娜. 铝、镁合金微弧氧化层表面ZrO2光化学溶胶凝封孔层的制备及耐蚀性研究[D]. 西安: 西安理工大学, 2019.

    LI N. Photochemical preparation and corrosion resistance of ZrO2 SOL-GEL sealing layer on MAO coating of aluminum and magnesium alloy[D]. Xi’an: Xi’an University of Technology, 2019.
    [5] 孙乐. 镁表面等离子电解渗与微弧氧化复合膜的制备及其耐蚀性研究[D]. 兰州: 兰州理工大学, 2021.

    SUN L. Fabrication and corrosion resistance of hybrid coatings formed by combining plasma electrolytic saturation with micro-arc oxidation on magnesium substrates[D]. Lanzhou: Lanzhou University of Technology, 2021.
    [6] 蒋世权,吴方. 镁合金表面微弧氧化/自组装复合膜的耐蚀性能[J]. 表面技术,2021,50(4):294-303.

    JIANG S Q,WU F. Corrosion resistance of micro-arc oxidation/self-assembled composite coating on magnesium alloy[J]. Surface Technology,2021,50(4):294-303.
    [7] 李雨晴. 镁合金表面微弧氧化复合涂层的制备及耐蚀性研究[D]. 桂林: 桂林理工大学, 2021.

    LI Y Q. Preparation and corrosion resistance of micro-arc oxidation composite on magnesium alloy surface[D]. Guilin: Guilin university of technology, 2021.
    [8] 廖燚钊,薛文斌,万旭敏. 放电发光谱在金属微弧氧化表面处理中的应用研究进展[J]. 航空材料学报,2021,41(2):32-44. doi: 10.11868/j.issn.1005-5053.2020.000137

    LI Y Z,XUE W B,WAN X M. Research progress in the application of optical emission spectroscopy in metal microarc oxidation surface treatment[J]. Journal of Aeronautical Materials,2021,41(2):32-44. doi: 10.11868/j.issn.1005-5053.2020.000137
    [9] 师晓婷,朱园园. AZ31B镁合金表面含钛涂层的制备及耐蚀性[J]. 航空材料学报,2019,39(1):17-25.

    SHI X T,LI Y Y. Preparation and corrosion resistance of titanium-containing coating on AZ31B magnesium alloy[J]. Journal of Aeronautical Materials,2019,39(1):17-25.
    [10] 余灏勋,马廷霞. 镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能[J]. 功能材料,2021,52(1):1022-1025. doi: 10.3969/j.issn.1001-9731.2021.01.004

    YU H X,MA T X. Preparation and corrosion resistance of micro-arc oxidation ceramic coatings on magnesium alloys[J]. Journal of Functional Materials,2021,52(1):1022-1025. doi: 10.3969/j.issn.1001-9731.2021.01.004
    [11] 朱宏达,管秀荣. 镁合金淡黄色微弧氧化膜的制备及性能研究[J]. 电镀与环保,2019,39(6):58-60. doi: 10.3969/j.issn.1000-4742.2019.06.019

    ZHU H D,GUAN X R. Preparation and properties of light-yellow micro-arc oxidation coating on magnesium alloy[J]. Electroplating & Pollution Control,2019,39(6):58-60. doi: 10.3969/j.issn.1000-4742.2019.06.019
    [12] TANG H,ZHU B,HE L. Growth process and dielectric breakdown of micro arc oxidation coating on AZ31 Mg alloy pretreated by alkali treatment[J]. Prot Met Phys Chem,2020,56(1):156-163. doi: 10.1134/S2070205120010244
    [13] 巩锐,候步逸. 镁合金微弧氧化表面处理技术研究进展及展望[J]. 金属世界,2020,4:8-18. doi: 10.3969/j.issn.1000-6826.2020.06.003

    GONG R,HOU B Y. Research progress and prospect of micro arc oxidation surface treatment technology for magnesium alloys[J]. Metal World,2020,4:8-18. doi: 10.3969/j.issn.1000-6826.2020.06.003
    [14] 陈宏,王成成. 镁合金微弧氧化的研究现状[J]. 表面技术,2019,48(7):49-60.

    CHEN H,WANG C C. Research status of micro-arc oxidation of magnesium alloy[J]. Surface Technology,2019,48(7):49-60.
    [15] QIAN B Y,MIAO W. Influence of voltage on the corrosion and wear resistance of micro-arc oxidation coating on Mg-8Li-2Ca alloy[J]. Acta Metall Sin Engl,2019,32(2):194-204. doi: 10.1007/s40195-018-0845-y
    [16] 安凌云,常成功. 镁合金微弧氧化膜在三种饱和盐溶液中耐蚀性研究[J]. 材料导报,2023,37(7):21070250.

    AN L Y,CHANG C G. Study on corrosion resistance of micro-arc oxidation modified magnesium alloy in three kinds of saturated salt solutions[J]. Materials Reports,2023,37(7):21070250.
    [17] 付景国,刘建,朱新河,等. 微纳米颗粒在制备微弧氧化复合膜层中的影响研究现状[J]. 热加工工艺,2020,49(2):12-19. doi: 10.14158/j.cnki.1001-3814.20183919

    FU J G,LIU J,ZHU X H,et al. Research status of influence of micro-nano particles in preparation of micro-arc oxidation composite layer[J]. Hot Working Technology,2020,49(2):12-19. doi: 10.14158/j.cnki.1001-3814.20183919
    [18] 王志虎. 镁合金微弧氧化陶瓷层表面耐蚀/导电涂层的制备及性能表征[D]. 西安: 西安理工大学, 2021.

    WANG Z H. Preparation and characterization of corrosion resistant/conductive coatings on the surface of micro-arc oxidation coated magnesium alloy[D]. Xi’an: Xi’an University of Technology, 2021.
    [19] 曾云. 镁及镁合金表面含碳微弧氧化陶瓷层性能的研究[D]. 北京: 北京化工大学, 2016.

    ZENG Y. Properties research of coating carbon micro-arc oxidation ceramic coating on pure Mg and Mg alloy[D]. Beijing: Beijing University of Chemical Technology, 2016.
    [20] ZHU J Y,JIA H J. Improvement on corrosion resistance of micro-arc oxidized AZ91D magnesium alloy by a pore-sealing coating[J]. Journal of Alloys and Compounds,2021,889:161460. doi: 10.1016/j.jallcom.2021.161460
    [21] YANG W,XU D P. Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy[J]. Corrosion Science,2018,136:174-179. doi: 10.1016/j.corsci.2018.03.004
    [22] BAI J Y,LI S Z. Preparation and characterization of black micro-arc oxidation films[J]. Acta Physico-Chimica Sinica,2016,32(9):2271-2279. doi: 10.3866/PKU.WHXB201606071
    [23] WANG C G,WU L P. Electrochemical noise analysis on the pit corrosion susceptibility of biodegradable AZ31 magnesium alloy in four types of simulated body solutions[J]. Journal of Materials Science Technology,2018,11(2):1876-1884.
    [24] 李忠盛, 吴护林, 丁星星. AZ80镁合金表面冷喷涂铝/微弧氧化复合涂层耐蚀性能[J]. 材料工程, 2021, 49(12): 57-64.

    LI Z S, WU H L, DING X X. Corrosion resistance of cold sprayed aluminum/micro-arc oxidation composite coating on AZ80 magnesium alloy.
    [25] 车广东,刘向东. 镁合金表面微弧氧化放电现象及氧化膜特性分析[J]. 稀有金属材料工程,2015,44(4):897-900.

    CHE G D,LIU X D. Discharge phenomenon of micro-arc oxidation on magnesium alloy surface and analysis of oxide film characteristics[J]. Rare Metal Materials and Engineering,2015,44(4):897-900.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  17
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 修回日期:  2022-04-26
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回