Preparation and properties of AZO/Ag/AZO thin films on PMMA substrates
-
摘要: 采用低温磁控溅射技术在有机玻璃(聚甲基丙烯酸甲酯PMMA)表面制备铝掺杂氧化锌(AZO)叠层AZO/Ag/AZO透明导电薄膜,研究AZO溅射功率对AZO/Ag/AZO薄膜结构和性能的影响,探讨PMMA层合结构的耐湿热性和加温性能。通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线衍射仪(XRD)表征薄膜的形貌和结构。结果表明:AZO的溅射功率影响了AZO层表面能以及薄膜的结晶度,在100 W和150 W溅射功率下制备出的AZO/Ag/AZO薄膜室温下具有3.7 Ω/sq的低薄膜电阻和86.1%的高透光率,采用PMMA和聚氨酯胶片对薄膜进行层合封装,湿热30天后仍保持光学、电学性能稳定。PMMA层合结构在加温过程中的时间-温度曲线表明在5 V直流电压下层合玻璃具有较快的温度响应时间和良好的温度均匀性。−10~−40 ℃空气对流中PMMA层合结构表现出良好的温度稳定性。
-
关键词:
- PMMA /
- AZO/Ag/AZO /
- 层合 /
- 耐湿热性 /
- 电加温
Abstract: AZO/Ag/AZO transparent conductive films were prepared on PMMA substrate by DC magnetron sputtering at low temperature (70 ℃). The effect of AZO sputtering power on the structure and properties of AZO/Ag/AZO thin films were investigated. In order to encapsulate AZO/Ag/AZO films, the films were laminated with another uncoated PMMA substrate and polyurethane film. Damp and heat resistance and heating performance of this laminated structure were discussed. The morphology and structure of the films were characterized by SEM, XRD and AFM. The results show that the sputtering power of AZO affects the surface energy of AZO layer and the crystallization of AZO/Ag/AZO films. The AZO/Ag/AZO films which prepared with AZO sputtering power of 100W and 150W exhibit the best performance with a low sheet resistance of 3.7 Ω/sq and a high transmittance of 86.1% at room temperature. The optical and electrical properties of PMMA laminated structure remain stable after 30 days of damp-heat experiment. The temperature-time curve during the heating process of the PMMA laminated structure at room temperature shows fast temperature response time and good temperature uniformity under 5 V DC voltage. The PMMA laminated structure exhibits saturation temperature stability in cold convection air (−10-−40 ℃).-
Key words:
- PMMA substrate /
- AZO/Ag/AZO /
- lamination /
- damp-heat /
- transparent heaters
-
图 3 Ag在PMMA基体以及不同溅射功率下的AZO表面生长的AFM图 (a)PMMA/Ag;(b)PMMA/ 50 W AZO/Ag;(c)PMMA/ 100 W AZO/Ag;(d)PMMA/150 W AZO/Ag;(e)PMMA/200 W AZO/Ag;
Figure 3. AFM images of Ag growth on PMMA substrate surface and AZO surface deposited with different sputtering powers (a) PMMA/Ag; (b) PMMA/ 50 W AZO/Ag; (c) PMMA/ 100 W AZO/Ag: (d) PMMA/150 W AZO/Ag; (e) PMMA/200 W AZO/Ag
图 7 不同时长湿热实验后AZO/Ag/AZO薄膜微观形貌和EDS微区成分 (a)10 d后;(b)15 d后;(c)20 d后;(1)形貌;(2)、(3)微区成分
Figure 7. Micromorphology of AZO/Ag/AZO thin films and EDS microdomain composition after different time of damp-heat experiments (a) after 10 days; (b) after 15 days; (c) after 20 days; (1) micromorphology; (2), (3) microdomain composition
表 1 不同AZO溅射功率下AZO和Ag膜的XRD特征值
Table 1. XRD data assessment for AZO and Ag films with different sputtering powers of AZO layers
Sputtering power of AZO/W Diffraction angle/(°) FWHM/rad Grain size/nm AZO Ag AZO Ag AZO Ag 50 16.94 19.08 0.01107 0.01042 12.9 13.9 100 16.98 19.09 0.01051 0.01077 13.6 13.5 150 16.90 19.05 0.01049 0.01079 13.7 13.4 200 16.92 19.06 0.01169 0.01073 12.3 13.5 表 2 不同溅射功率沉积的AZO和PMMA基体表面能参数
Table 2. Surface energy parameters of PMMA substrates and AZO deposited with different sputtering powers
Material $ {\gamma }_{\rm S}^{\rm LW} $/(mJ·m−2) $ {\gamma }_{\rm S}^{+} $/ (mJ·m−2) $ {\gamma }_{\rm S}^{-} $/ (mJ·m−2) $ {\gamma }_{\rm S} $/( mJ·m−2) 50 W AZO 46.02 0.18 25.97 50.38 100 W AZO 47.57 0.21 26.95 52.36 150 W AZO 45.79 0.24 26.39 50.88 200 W AZO 44.90 0.04 20.65 46.89 PMMA 38.06 0.05 4.46 39.09 Note:$ {\gamma }_{\rm S}^{\rm LW} $ is Lifshitz-van der Waals; $ {\gamma }_{\rm S}^{+} $ is Lewis acid; $ {\gamma }_{\rm S}^{-} $ is Lewis base; $ {\gamma }_{\rm S} $ is solid surface energy. -
[1] 代晓瑛,雷兴平,靳耿栓. 航空有机玻璃应用性能研究[J]. 塑料工业,2020,48(增刊1):125-127.DAI X Y,LEI X P,JIN G S. Study on the application performance of aviation plexglass[J]. China Plastics Industry,2020,48(Suppl1):125-127. [2] 赵景云,BLACKMAN B,颜悦,等. YB-DM-10航空定向有机玻璃疲劳裂纹扩展性能[J]. 材料工程,2018,46(8):156-162. doi: 10.11868/j.issn.1001-4381.2017.000370ZHAO J Y,BLACKMAN B,YAN Y,et al. Fatigue crack propagation property of YB-DM-10 directional PMMA[J]. Journal of Materials Engeering,2018,46(8):156-162. doi: 10.11868/j.issn.1001-4381.2017.000370 [3] 李志生,张洪峰,厉蕾,等. 新型结构粘接材料对航空有机玻璃性能的影响[J]. 航空材料学报,2017,37(3):78-83. doi: 10.11868/j.issn.1005-5053.2016.000188LI Z S,ZHANG H F,LI L,et al. Effects of novel structure bonding materials on properties of aeronautical acrylic[J]. Journey of Aeronautical Materials,2017,37(3):78-83. doi: 10.11868/j.issn.1005-5053.2016.000188 [4] 熊伟腾,王云英,范金娟,等. 非定向有机玻璃拉伸断口形貌与拉伸温度相关性分析[J]. 材料工程,2020,48(10):96-104. doi: 10.11868/j.issn.1001-4381.2019.000482XIONG W T,WANG Y Y,FAN J J,et al. Correlation analysis between tensile fracture morphology and tensile temperature of non-oriented acrylic sheet[J]. Journal of Materials Engeering,2020,48(10):96-104. doi: 10.11868/j.issn.1001-4381.2019.000482 [5] SOREL S,BELLET D,COLEMAN J N. Relationship between material properties and transparent heater performance for both bulk-like and percolative nanostructured networks[J]. ACS Nano,2014,8(5):4805-4814. doi: 10.1021/nn500692d [6] 李玉杰,陈东林,李玉琴,等. 飞机座舱有机玻璃与ITO薄膜附着力优化[J]. 塑性工程学报,2012,19(1):113-117. doi: 10.3969/j.issn.1007-2012.2012.01.023LI Y J,CHEN D L,LI Y Q,et al. Optimization of adhesion force between ITO films and PMMA used in airplane canopy[J]. Journal of Plasticity Engineering,2012,19(1):113-117. doi: 10.3969/j.issn.1007-2012.2012.01.023 [7] 谷松,赵维忠,李锦平. 有机玻璃玻璃化转变温度影响因素的研究[J]. 塑料工业,2012,40(12):93-95. doi: 10.3969/j.issn.1005-5770.2012.12.021GU S,ZHAO W Z,LI J P. Studies on the factors in glass transition temperature of organic glass[J]. China Plastics Industry,2012,40(12):93-95. doi: 10.3969/j.issn.1005-5770.2012.12.021 [8] KIM D H,PARK M R,LEE G H. Preparation of high quality ITO films on a plastic substrate using RF magnetron sputtering[J]. Surface and Coatings Technology,2006,201(3/4):927-931. [9] 郝常山,彭晶晶,雷沛,等. 退火气氛对ZnO: Al薄膜光学、电学和微结构的影响[J]. 航空材料学报,2021,41(4):134-140. doi: 10.11868/j.issn.1005-5053.2021.000001HAO C S,PENG J J,LEI P,et al. Effect of annealing atmosphere on optical, electrical properties and microstructure of ZnO∶Al films[J]. Journey of Aeronautical Materials,2021,41(4):134-140. doi: 10.11868/j.issn.1005-5053.2021.000001 [10] 钟艳莉,李洁,张官理,等. 有机玻璃透明导电膜配套涂层的应用研究[J]. 现代涂料与涂装,2011,14(8):4-8. doi: 10.3969/j.issn.1007-9548.2011.08.002ZHONG Y L,LI J,ZHANG G L,et al. Study on the application of coatings for the deposition of transparent conductive films on PMMA[J]. Modern Paint and Finishing,2011,14(8):4-8. doi: 10.3969/j.issn.1007-9548.2011.08.002 [11] 张运生,杨幼然,王永斌,等. 有机玻璃衬底磁控溅射ITO膜的制备与性能研究[J]. 半导体光电,2014,35(1):69-72. doi: 10.16818/j.issn1001-5868.2014.01.018ZHANG Y S,YANG Y R,WANG Y B,et al. Preparation and properties of ITO films deposited on PMMA substrate by magnetron sputtering[J]. Semiconductor Optoelectronics,2014,35(1):69-72. doi: 10.16818/j.issn1001-5868.2014.01.018 [12] WANG Z,LI J,XU J,et al. Robust ultrathin and transparent AZO/Ag-SnO /AZO on polyimide substrate for flexible thin film heater with temperature over 400 ℃[J]. Journal of Materials Science & Technology,2020,48:156-162. [13] PARK J Y,KIM H K. Flexible metal/oxide/metal transparent electrodes made of thermally evaporated MoO3/Ag/MoO3 for thin film heaters[J]. Physica Status Solidi A,2018,215(23):1800674. [14] KHACHATRYAN H,KIM M,SEA H J,et al. Fabrication of InZnSiO/Ag/InZnSiO transparence flexible heater on polymer substrate by continuous roll-to-roll sputtering advanced technology[J]. Materials Science in Semiconductor Processing,2019,99:1-7. doi: 10.1016/j.mssp.2019.04.008 [15] GUILLéN C,HERRERO J. TCO/metal/TCO structures for energy and flexible electronics[J]. Thin Solid Films,2011,520(1):1-17. doi: 10.1016/j.tsf.2011.06.091 [16] ROUL M K,PRADHAN S K,SONG K D,et al. RF magnetron-sputtered Al-ZnO/Ag/Al-ZnO (AAA) multilayer electrode for transparent and flexible thin-film heater[J]. Journal of Materials Science,2019,54(9):7062-7071. doi: 10.1007/s10853-019-03376-0 [17] FERHATI H,DJEFFAL F. Performance assessment of TCO/metal/TCO multilayer transparent electrodes: from design concept to optimization[J]. Journal of Computational Electronics,2020,19(2):815-824. doi: 10.1007/s10825-020-01459-9 [18] MOHAMED S H. Effects of Ag layer and ZnO top layer thicknesses on the physical properties of ZnO/Ag/ZnO multilayer system[J]. Journal of Physics and Chemistry of Solids,2008,69(10):2378-2384. doi: 10.1016/j.jpcs.2008.03.019 [19] YUN J. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices[J]. Advanced Functional Materials,2017,27(18):1606641. doi: 10.1002/adfm.201606641 [20] 李焕勇,庞世红,马静,等. 铝掺杂量对氧化锌(ZnO∶Al)薄膜光电特性影响[J]. 武汉理工大学学报,2010,32(22):138-140. doi: 10.3963/j.issn.1671-4431.2010.22.035LI H Y,PANG S H,MA J,et al. Effect of Al doped on optics and electricity of ZnO (ZnO∶Al) thin films[J]. Journal of Wuhan University of Technology,2010,32(22):138-140. doi: 10.3963/j.issn.1671-4431.2010.22.035 [21] KHAN M I,NEHA T R,BILLAH M M. UV-irradiated sol-gel spin coated AZO thin films: enhanced optoelectronic properties[J]. Heliyon,2022,8(1):e08743. doi: 10.1016/j.heliyon.2022.e08743 [22] SERGEANT N P,HADIPOUR A,NIESEN B,et al. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells[J]. Advanced Materials,2012,24(6):728-732. doi: 10.1002/adma.201104273 [23] RIVEIRO J M,NORMILE P S,ANDRéS J P,et al. Oxygen-assisted control of surface morphology in nonepitaxial sputter growth of Ag[J]. Applied Physics Letters,2006,89(20):201902. doi: 10.1063/1.2388140 [24] SCHWAB T,SCHUBERT S,HOFMANN S,et al. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes[J]. Advanced Optical Materials,2013,1(10):707-713. doi: 10.1002/adom.201300241 [25] ZOU J,LI C Z,CHANG C Y,et al. Interfacial engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells[J]. Advanced Materials,2014,26(22):3618-3623. doi: 10.1002/adma.201306212 [26] VALL C M S,CHAIK M,DADS H A,et al. Effect of RF power on the structural and optical properties of ZnS thin films prepared by RF-sputtering[J]. Journal of Semiconductors,2018,39(12):123001. doi: 10.1088/1674-4926/39/12/123001 [27] ZHAO C,MA C,LIU J,et al. Sputtering power on the microstructure and properties of MgF2 thin films prepared with magnetron sputtering[J]. Journal of Inorganic Materials,2020,35(9):1064. doi: 10.15541/jim200190565 [28] OSS C J V,CHAUDHURY M K,GOOD R J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems[J]. Chemical Reviews,1988,88(6):927-941. doi: 10.1021/cr00088a006 [29] 贾芳,乔学亮,陈建国,等. 磁控溅射制备AZO/Ag/AZO透明导电膜的性能研究[J]. 光电工程,2007,34(12):38-41.JIA F,QIAO X L,CHEN J G,et al. Performance study of AZO/Ag/AZO transparent conductive multilayer prepared films by R. F magnetron sputtering[J]. Opto-Electronic Engineering,2007,34(12):38-41. [30] 程静云,康朝阳,宗海涛,等. Ag缓冲层对ZnO∶Al薄膜结构与光电性能的改善[J]. 物理学报,2017,66(2):326-333.CHENG J Y,KANG C Y,ZONG H T,et al. Structural and photoelectrical properties of AZO thin films improved by Ag buffer layers[J]. Acta Physica Sinica,2017,66(2):326-333. [31] 李钢贤. AZO透明导电薄膜载流子输运机制及特性研究 [D]. 武汉: 华中科技大学, 2011.LI G X. The carrier transport mechanism and a series of properties in AZO transparent conducting thin films [D]. Wuhan: Huazhong University of Science and Technology, 2011. [32] LEE H C,PARK O O. Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity scattering[J]. Vacuum,2004,75(3):275-282. doi: 10.1016/j.vacuum.2004.03.008 [33] KIM Y S,PARK J H,CHOI D H,et al. ITO/Au/ITO multilayer thin films for transparent conducting electrode applications[J]. Applied Surface Science,2007,254(5):1524-1527. doi: 10.1016/j.apsusc.2007.07.080 [34] DAOUDI K,SANDU C S,TEODORESCU V S,et al. Rapid thermal annealing procedure for densification of sol-gel indium tin oxide thin films[J]. Crystal Engineering,2002,5(3):187-193. [35] EOM H,LEE J,PICHITPAJONGKIT A,et al. Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization[J]. Small,2014,10(20):4171-4181. [36] WATERHOUSE G I N,BOWMAKER G A,METSON J B. Oxidation of a polycrystalline silver foil by reaction with ozone[J]. Applied Surface Science,2001,183(3):191-204. [37] 孙瑶, 王永斌, 汪洪. 低辐射银膜的团聚形貌与成分偏聚 [C]//硅酸盐通报, 2015年全国玻璃科学技术年会论文专集. 2015, 34(增刊1): 101-105.SUN Y, WANG Y B, WANG H. Agglomeration morphology and element segregation of Ag film in low-emissivity stacks [C]//Bulletin the Chinese Ceramic Society, 2015, 34(Suppl1): 101-105. [38] XU C,GAO W. Pilling-Bedworth ratio for oxidation of alloys[J]. Material Research Innovations,2000,3(4):231-5. doi: 10.1007/s100190050008 [39] 多树旺,李美栓,张亚明,等. 银在原子氧环境中的氧化行为[J]. 稀有金属材料与工程,2006,35(7):1057-1060. doi: 10.3321/j.issn:1002-185X.2006.07.011DUO S W,LI M S,ZHANG Y M,et al. The oxidation behaviour of polycrystalline silver films by atomic oxygen[J]. Rare Metal Materials and Engineering,2006,35(7):1057-1060. doi: 10.3321/j.issn:1002-185X.2006.07.011 -