NiCoCrAlY/YSZ梯度涂层热力学性能的有限元模拟

王士峰 夏明岗 刘明 王玉 王斌 白宇 王海斗

王士峰, 夏明岗, 刘明, 王玉, 王斌, 白宇, 王海斗. NiCoCrAlY/YSZ梯度涂层热力学性能的有限元模拟[J]. 航空材料学报, 2023, 43(1): 70-79. doi: 10.11868/j.issn.1005-5053.2022.000059
引用本文: 王士峰, 夏明岗, 刘明, 王玉, 王斌, 白宇, 王海斗. NiCoCrAlY/YSZ梯度涂层热力学性能的有限元模拟[J]. 航空材料学报, 2023, 43(1): 70-79. doi: 10.11868/j.issn.1005-5053.2022.000059
WANG Shifeng, XIA Minggang, LIU Ming, WANG Yu, WANG Bin, BAI Yu, WANG Haidou. Finite element simulation of thermodynamic properties of NiCoCrAlY/YSZ gradient coating[J]. Journal of Aeronautical Materials, 2023, 43(1): 70-79. doi: 10.11868/j.issn.1005-5053.2022.000059
Citation: WANG Shifeng, XIA Minggang, LIU Ming, WANG Yu, WANG Bin, BAI Yu, WANG Haidou. Finite element simulation of thermodynamic properties of NiCoCrAlY/YSZ gradient coating[J]. Journal of Aeronautical Materials, 2023, 43(1): 70-79. doi: 10.11868/j.issn.1005-5053.2022.000059

NiCoCrAlY/YSZ梯度涂层热力学性能的有限元模拟

doi: 10.11868/j.issn.1005-5053.2022.000059
基金项目: 国家自然科学基金重点项目(52130509);国家自然科学基金面上项目(52075542);国家自然科学基金青年项目(52005388)
详细信息
    通讯作者:

    白宇(1983—),男,博士,教授,主要从事新型陶瓷涂层、金属陶瓷复合涂层的研究,联系地址:陕西省西安市碑林区咸宁西路28号西安交通大学(710049),E-mail:byxjtu@mail.xjtu.edu.cn

  • 中图分类号: TG148

Finite element simulation of thermodynamic properties of NiCoCrAlY/YSZ gradient coating

  • 摘要: 采用代表体积单元法建立NiCoCrAlY/YSZ梯度热障涂层的有限元二维微观模型,计算不同相成分配比下梯度层的热物理性能参数,将参数结果推广到三维多层涂层实体模型,研究热循环过程中双层结构涂层和梯度结构涂层的热力学性能。结果表明:梯度层的弹性模量、泊松比、热膨胀系数、导热系数与各相成分比例近似呈线性关系,导热系数受各相分布形态的影响;当梯度层中NiCoCrAlY相成分比例在0.7以下时,导热系数较低,常温状态最高为2.91 W·m−1·K−1。相比于双层结构涂层,梯度结构涂层的YSZ成分比例降低20%,隔热温度降低14%,陶瓷面层在高温时产生的热失配径向拉应力降低47%,轴向拉应力降低32%,切应力降低37%,冷却后的残余应力降低50%,这归因于涂层结构的梯度化有效降低涂层与基体热膨胀系数不同而产生的热失配应力。根据涂层应力分布结果,涂层易在TC/BC界面的中心区域形成垂直裂纹,靠近外侧边缘区形成水平裂纹。

     

  • 图  1  梯度结构热障涂层 (a)显微结构形貌;(b)微观结构模型

    Figure  1.  Gradient structured thermal barrier coating  (a)microstructure morphology;(b)microstructural model

    图  2  梯度层的热物理性能参数分析模型的边界条件 (a)弹性模量及泊松比;(b)导热系数;(c)热膨胀系数

    Figure  2.  Boundary conditions of thermophysical properties analysis model of gradient layer  (a)elasticity modulus and Poisson’s ratio;(b)thermal conductivity;(c)coefficient of thermal expansion

    图  3  涂层系统的实体结构有限元模型  (a)实体模型;(b)双层结构涂层;(c)三层梯度涂层;(d)五层梯度涂层

    Figure  3.  Solid structure finite element model of coating system  (a)solid model;(b)double-layer coating;(c)three-layer gradient coating;(d)five-layer gradient coating

    图  4  不同温度下梯度层的热物理性能参数随NiCoCrAlY相比例变化曲线  (a)弹性模量;(b)泊松比;(c)导热系数;(d)热膨胀系数;(e)热容;(f)密度

    Figure  4.  Variation curves of thermophysical properties of the gradient layer with different proportion of NiCoCrAlY phase at different temperatures  (a)elasticity modulus;(b)Poisson's ratio;(c)thermal conductivity;(d)coefficient of thermal expansion;(e)thermal capacity;(f)density

    图  5  涂层热导率的有限元计算结果与实验测试结果

    Figure  5.  Finite element calculation results and experimental test results of the thermal conductivity of coating

    图  6  不同结构涂层的隔热模拟结果  (a)涂层轴向温度分布;(b)涂层隔热性能对比

    Figure  6.  Thermal insulation simulation results of coatings with different structures (a)axial temperature distribution of coatings;(b)comparison of insulation properties of coatings

    图  7  不同结构涂层的合金底层产生的剪切应力  (a)高温状态;(b)室温状态

    Figure  7.  Shear stresses generated in alloy base layers with different structural coatings  (a)high temperature condition;(b)room temperature condition

    图  8  不同结构涂层的陶瓷面层产生的最大轴向拉应力

    Figure  8.  Maximum axial tensile stresses generated in ceramic top layers with different structural coatings

    图  9  不同结构涂层的陶瓷面层产生的径向拉应力对比  (a)各涂层产生的最大径向拉应力;(b)双层、三层梯度、五层梯度涂层应力分布;(c)三层梯度涂层应力分布;(d)五层梯度涂层应力分布

    Figure  9.  Comparison of the maximum radial tensile stresses generated in ceramic top layers with different structural coatings  (a)maximum radial tensile stress generated in each coating;(b)stress distributions in double-layer, three-layer gradient and five-layer gradient coatings;(c)stress distribution in three-layer gradient coating;(d)stress distribution in five-layer gradient coating

    表  1  材料热物理性能参数[15-16]

    Table  1.   Thermophysical properties of materials[15-16]

    MaterialTemperature/℃E/GPaνα/(10−6·K−1)κ/(W·m−1·K−1)C/(J·kg−1·K−1)ρ/(kg·m−3)
    YSZ20105.40.257.91.0325004580
    2000.258.771.0324580
    4000.259.460.9115764580
    6000.2510.340.7884580
    8000.2510.710.6616374580
    10000.2511.700.6224580
    11000.2512.200.6224580
    NiCoCrAlY202000.3013.65.84008100
    2001900.3014.27.54008100
    4001750.3114.69.54008100
    6001600.3115.212.04008100
    8001450.3216.114.54008100
    10001200.3317.216.24008100
    11001100.3317.617.04008100
    Casting aluminum alloy20 840.3221.01304002680
    400 700.3221.81484002680
    下载: 导出CSV

    表  2  双层涂层和梯度涂层的层数和成分比例

    Table  2.   Number of layer and composition ratios of double-layer coating and gradient coating

    Coating typeModelLayerProportion of NiCoCrAlY in each layer
    Double-layer coatingG0
    Three-layer gradient coatingG3-130.20.50.8
    G3-230.30.50.7
    G3-330.40.50.6
    Five-layer gradient coatingG5-150.20.30.50.70.8
    G5-250.20.40.50.60.8
    G5-350.30.40.50.60.7
    下载: 导出CSV

    表  3  网格无关性验证结果

    Table  3.   Grid independent validation results

    Gradient structureModel parameter
    Element size/μmElement numberMaximum mises/MPa
    SUB100-1000204000308.35
    50-1000240000308.38
    BC and GC25 80000308.35
    16128000308.37
    TC50240000316.61
    37.5320000320.71
    下载: 导出CSV
  • [1] 薛召露,郭洪波,宫声凯,等. 新型热障涂层陶瓷隔热层材料[J]. 航空材料学报,2018,38(2):10-20. doi: 10.11868/j.issn.1005-5053.2018.001001

    XUE Z L,GUO H B,GONG S K,et al. Novel ceramic materials for thermal barrier coatings[J]. Journal of Aeronautical Materials,2018,38(2):10-20. doi: 10.11868/j.issn.1005-5053.2018.001001
    [2] 王斯佳,徐彤,刘梅军,等. 热障涂层失效行为及长寿命设计研究现状[J]. 材料研究与应用,2022,16(1):1-18. doi: 10.3969/j.issn.1673-9981.2022.01.003

    WANG S J,XU T,LIU M J,et al. Failure behavior and long-life design of thermal barrier coating: a review[J]. Materials Research and Application,2022,16(1):1-18. doi: 10.3969/j.issn.1673-9981.2022.01.003
    [3] 张博,李广荣,徐彤,等. 长寿命热障涂层的剥落机理及抗剥落结构设计[J]. 航空材料学报,2022,42(1):1-14. doi: 10.11868/j.issn.1005-5053.2021.000130

    ZHANG B,LI G R,XU T,et al. Failure mechanism and cracking-resistant design of thermal barrier coatings with long life span[J]. Journal of Aeronautical Materials,2022,42(1):1-14. doi: 10.11868/j.issn.1005-5053.2021.000130
    [4] 种南京,柳琪,李天庆,等. 厚质梯度NiCoCrAlY/YSZ热障涂层的制备及结合性能[J]. 铸造技术,2021,42(7):555-559.

    CHONG N J,LIU Q,LI T Q,et al. Bonding property of high-thickness gradient NiCoCrAlY/YSZ thermal barrier coatings[J]. Foundry Technology,2021,42(7):555-559.
    [5] 周雳,邢志国,王海斗,等. 等离子喷涂金属/陶瓷梯度热障涂层研究进展[J]. 表面技术,2020,49 (1):122-131. doi: 10.16490/j.cnki.issn.1001-3660.2020.01.015

    ZHOU L,XING Z G,WANG H D,et al. Research progress of metal/ceramic gradient thermal barrier coatings by plasma spraying[J]. Surface Technology,2020,49 (1):122-131. doi: 10.16490/j.cnki.issn.1001-3660.2020.01.015
    [6] 王涛,朱磊,唐杰,等. 双送粉激光熔覆CoCrAlSiY/YSZ梯度涂层微观组织及热振性能[J]. 中国机械工程,2021,32(15):1854-1860. doi: 10.3969/j.issn.1004-132X.2021.15.011

    WANG T,ZHU L,TANG J,et al. Microstructure and thermal shock properties of CoCrAlSiY/YSZ gradient coatins by double-powder-feeding laser cladding[J]. China Mechanical Engineering,2021,32(15):1854-1860. doi: 10.3969/j.issn.1004-132X.2021.15.011
    [7] 刘文光,丰霞瑶,姚婉,等. 功能梯度圆柱壳的热应力与热传导分析[J]. 航空材料学报,2019,39(6):81-89. doi: 10.11868/j.issn.1005-5053.2018.000127

    LIU W G,FENG X Y,YAO W,et al. Analysis on thermal stress and heat conduction of functionally graded cylindrical shell[J]. Journal of Aeronautical Materials,2019,39(6):81-89. doi: 10.11868/j.issn.1005-5053.2018.000127
    [8] 程西云,张政科. 梯度结构对氧化铝/镍梯度涂层抗热应力的影响[J]. 润滑与密封,2016,41(10):13-18. doi: 10.3969/j.issn.0254-0150.2016.10.003

    CHENG X Y,ZHANG Z K. Influences of gradient structure on thermal shear stresses of Al2O3/Ni gradient coatings[J]. Lubrication Engineering,2016,41(10):13-18. doi: 10.3969/j.issn.0254-0150.2016.10.003
    [9] 庞铭,张啸寒. 结构参数对等离子喷涂Mo/8YSZ功能梯度热障涂层残余应力的影响[J]. 航空材料学报,2020,40(6):23-32. doi: 10.11868/j.issn.1005-5053.2019.000065

    PANG M,ZHANG X H. Effect of structural parameters on the residual stress of Mo/8YSZ functionally graded thermal barrier coating prepared by plasma spraying[J]. Journal of Aeronautical Materials,2020,40(6):23-32. doi: 10.11868/j.issn.1005-5053.2019.000065
    [10] BAIG M N, KHALID F A, KHAN F N, et al. Properties and residual stress distribution of plasma sprayed magnesia stabilized zirconia thermal barrier coatings[J]. Ceramics International, 2014, 40(3): 4853-4868.
    [11] BHATTACHARYYA A, MAURICE D. Residual stresses in functionally graded thermal barrier coatings [J]. Mechanics of Materials, 2019, 129: 50-56.
    [12] 郭蕙敏,李博,张立群,等. 真实TGO界面形貌对热障涂层界面应力的影响[J]. 金属热处理,2021,46(11):232-235. doi: 10.13251/j.issn.0254-6051.2021.11.041

    GUO H M,LI B,ZHANG L Q,et al. Effect of real TGO interface topography on interface stress of thermal barrier coatings[J]. Heat Treatment of Metals,2021,46(11):232-235. doi: 10.13251/j.issn.0254-6051.2021.11.041
    [13] 李佐君,梁伟,钟舜聪,等. TGO及初始裂纹对热障涂层裂纹形核与扩展影响的有限元分析[J]. 失效分析与预防,2021,16(5):300-308.

    LI Z J,LIANG W,ZHONG S C,et al. Influence of TGO and initial crack on crack nucleation and propagation in thermal barrier coatings based on finite element analysis[J]. Failure Analysis and Prevention,2021,16(5):300-308.
    [14] WEI Z Y, CAI H N, MENG G H, et al. An innovative model coupling TGO growth and crack propagation for the failure assessment of lamellar structured thermal barrier coatings[J]. Ceramics International, 2020, 46(2): 1532-1544.
    [15] WANG L, ZHONG X H, ZHAO Y X, et al. Design and optimization of coating structure for the thermal barrier coatings fabricated by atmospheric plasma spraying via finite element method[J]. Journal of Asian Ceramic Societies, 2014, 2(2): 102-116.
    [16] ZHOU Y C,HASHIDA T. Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system[J]. International Journal of Solids and Structures,2001,38(24-25):4235-4264. doi: 10.1016/S0020-7683(00)00309-7
    [17] 何周理,徐德昇. 二维编织复合材料弹性模量分析[J]. 装备制造技术,2016(3):51-53. doi: 10.3969/j.issn.1672-545X.2016.03.015

    HE Z L,XU D S. The transmitter design parameters theoretical analysis of a new generation of weather radar[J]. Equipment Manufacturing Technology,2016(3):51-53. doi: 10.3969/j.issn.1672-545X.2016.03.015
    [18] 凌锡祥,王玉璋,王星,等. 层状热障涂层孔隙微结构对其隔热性能影响的数值研究[J]. 中国有色金属学报,2015,25(2):408-414. doi: 10.19476/j.ysxb.1004.0609.2015.02.018

    LING X X,WANG Y Z,WANG X,et al. Numerical study of effect of pore microstructure of layered thermal barrier coatings on thermal insulation performance[J]. Journal of the Chinese Society of Rare Earths,2015,25(2):408-414. doi: 10.19476/j.ysxb.1004.0609.2015.02.018
    [19] RAJABI M, ABOUTALEBI M R, SEYEDEIN S H, et al. Simulation of residual stress in thick thermal barrier coating (TTBC) during thermal shock: a response surface-finite element modeling[J]. Ceramics International, 2022, 48(4): 5299-5311.
    [20] 庞铭,刘全秀,张啸寒. 梯度层不同配比对等离子喷涂Mo/8YSZ功能梯度热障涂层残余应力的影响规律研究[J]. 中国稀土学报,2020,38(5):677-687.

    PANG M,LIU Q X,ZHANG X H. Influence rule of different ratios of gradient layer on residual stress of plasma sprayed Mo/8YSZ functionally graded thermal barrier coating[J]. Journal of the Chinese Society of Rare Earths,2020,38(5):677-687.
    [21] 于海鹏,桑玮玮,李振军,等. Sm2Ce2O7-YSZ功能梯度热障涂层热冲击性能计算机模拟[J]. 中国陶瓷,2018,54(1):28-33.

    YU H P,SANG W W,LI Z J,et al. Computer simulation of thermal shock resistance of Sm2Ce2O7-YSZ function gradient thermal barrier coatings[J]. China Ceramics,2018,54(1):28-33.
    [22] EVANS A G,HE M Y,HUTCHINSON J W. Mechanics-based scaling laws for the durability of thermal barrier coatings[J]. Progress in Materials Science,2001,46(3/4):249-271. doi: 10.1016/S0079-6425(00)00007-4
    [23] WANG L,WANG Y,SUN X G,et al. Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J]. Ceramics International,2012,38 (5):3595-3606. doi: 10.1016/j.ceramint.2011.12.076
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  403
  • HTML全文浏览量:  111
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-05-18
  • 网络出版日期:  2022-10-11
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。