Finite element simulation of thermodynamic properties of NiCoCrAlY/YSZ gradient coating
-
摘要: 采用代表体积单元法建立NiCoCrAlY/YSZ梯度热障涂层的有限元二维微观模型,计算不同相成分配比下梯度层的热物理性能参数,将参数结果推广到三维多层涂层实体模型,研究热循环过程中双层结构涂层和梯度结构涂层的热力学性能。结果表明:梯度层的弹性模量、泊松比、热膨胀系数、导热系数与各相成分比例近似呈线性关系,导热系数受各相分布形态的影响;当梯度层中NiCoCrAlY相成分比例在0.7以下时,导热系数较低,常温状态最高为2.91 W·m−1·K−1。相比于双层结构涂层,梯度结构涂层的YSZ成分比例降低20%,隔热温度降低14%,陶瓷面层在高温时产生的热失配径向拉应力降低47%,轴向拉应力降低32%,切应力降低37%,冷却后的残余应力降低50%,这归因于涂层结构的梯度化有效降低涂层与基体热膨胀系数不同而产生的热失配应力。根据涂层应力分布结果,涂层易在TC/BC界面的中心区域形成垂直裂纹,靠近外侧边缘区形成水平裂纹。Abstract: The two-dimensional finite element microscopic model of NiCoCrAlY/YSZ gradient thermal barrier coating was established by using the representative volume element method to calculate the thermophysical properties of the gradient layer under different composition ratios. The parameter results were extended to the three-dimensional multi-layer solid model to study the thermodynamic properties of the double-layer coating and gradient structured coating under thermal cycling condition. The results show that the elastic modulus, Poisson's ratio, coefficient of thermal expansion and thermal conductivity of the gradient layer are approximately linear with the component proportion of each phase, and the thermal conductivity is also affected by the distribution pattern of each phase. The thermal conductivity is low and the highest value is 2.91 W·m−1·K−1 when the proportion of NiCoCrAlY phase in the gradient layer is below 0.7 at room temperature. Compared with the double-layer coating, the proportion of YSZ in gradient coatings is reduced by 20%, the insulation temperature is reduced by 14%, the radial tensile stress, axial tensile stress, and shear stress of the ceramic surface layer at high temperature are reduced respectively by 47%, 32% and 37%, and the residual stress after cooling is reduced by 50%. The results are attributed that the gradient of the coating structure can effectively reduce the thermal mismatch stress caused by the difference in the thermal expansion coefficient between coating and substrate. According to the results of coating stress distribution, the coating is inclined to form vertical cracks in the centre region and horizontal cracks near the outer edge of the TC/BC interface.
-
Key words:
- thermal barrier coating /
- gradient structure /
- finite element /
- microscopic model /
- thermal stress
-
图 4 不同温度下梯度层的热物理性能参数随NiCoCrAlY相比例变化曲线 (a)弹性模量;(b)泊松比;(c)导热系数;(d)热膨胀系数;(e)热容;(f)密度
Figure 4. Variation curves of thermophysical properties of the gradient layer with different proportion of NiCoCrAlY phase at different temperatures (a)elasticity modulus;(b)Poisson's ratio;(c)thermal conductivity;(d)coefficient of thermal expansion;(e)thermal capacity;(f)density
图 9 不同结构涂层的陶瓷面层产生的径向拉应力对比 (a)各涂层产生的最大径向拉应力;(b)双层、三层梯度、五层梯度涂层应力分布;(c)三层梯度涂层应力分布;(d)五层梯度涂层应力分布
Figure 9. Comparison of the maximum radial tensile stresses generated in ceramic top layers with different structural coatings (a)maximum radial tensile stress generated in each coating;(b)stress distributions in double-layer, three-layer gradient and five-layer gradient coatings;(c)stress distribution in three-layer gradient coating;(d)stress distribution in five-layer gradient coating
Material Temperature/℃ E/GPa ν α/(10−6·K−1) κ/(W·m−1·K−1) C/(J·kg−1·K−1) ρ/(kg·m−3) YSZ 20 105.4 0.25 7.9 1.032 500 4580 200 — 0.25 8.77 1.032 — 4580 400 — 0.25 9.46 0.911 576 4580 600 — 0.25 10.34 0.788 — 4580 800 — 0.25 10.71 0.661 637 4580 1000 — 0.25 11.70 0.622 — 4580 1100 — 0.25 12.20 0.622 — 4580 NiCoCrAlY 20 200 0.30 13.6 5.8 400 8100 200 190 0.30 14.2 7.5 400 8100 400 175 0.31 14.6 9.5 400 8100 600 160 0.31 15.2 12.0 400 8100 800 145 0.32 16.1 14.5 400 8100 1000 120 0.33 17.2 16.2 400 8100 1100 110 0.33 17.6 17.0 400 8100 Casting aluminum alloy 20 84 0.32 21.0 130 400 2680 400 70 0.32 21.8 148 400 2680 表 2 双层涂层和梯度涂层的层数和成分比例
Table 2. Number of layer and composition ratios of double-layer coating and gradient coating
Coating type Model Layer Proportion of NiCoCrAlY in each layer Double-layer coating G0 — — Three-layer gradient coating G3-1 3 0.2 0.5 0.8 G3-2 3 0.3 0.5 0.7 G3-3 3 0.4 0.5 0.6 Five-layer gradient coating G5-1 5 0.2 0.3 0.5 0.7 0.8 G5-2 5 0.2 0.4 0.5 0.6 0.8 G5-3 5 0.3 0.4 0.5 0.6 0.7 表 3 网格无关性验证结果
Table 3. Grid independent validation results
Gradient structure Model parameter Element size/μm Element number Maximum mises/MPa SUB 100-1000 204000 308.35 50-1000 240000 308.38 BC and GC 25 80000 308.35 16 128000 308.37 TC 50 240000 316.61 37.5 320000 320.71 -
[1] 薛召露,郭洪波,宫声凯,等. 新型热障涂层陶瓷隔热层材料[J]. 航空材料学报,2018,38(2):10-20. doi: 10.11868/j.issn.1005-5053.2018.001001XUE Z L,GUO H B,GONG S K,et al. Novel ceramic materials for thermal barrier coatings[J]. Journal of Aeronautical Materials,2018,38(2):10-20. doi: 10.11868/j.issn.1005-5053.2018.001001 [2] 王斯佳,徐彤,刘梅军,等. 热障涂层失效行为及长寿命设计研究现状[J]. 材料研究与应用,2022,16(1):1-18. doi: 10.3969/j.issn.1673-9981.2022.01.003WANG S J,XU T,LIU M J,et al. Failure behavior and long-life design of thermal barrier coating: a review[J]. Materials Research and Application,2022,16(1):1-18. doi: 10.3969/j.issn.1673-9981.2022.01.003 [3] 张博,李广荣,徐彤,等. 长寿命热障涂层的剥落机理及抗剥落结构设计[J]. 航空材料学报,2022,42(1):1-14. doi: 10.11868/j.issn.1005-5053.2021.000130ZHANG B,LI G R,XU T,et al. Failure mechanism and cracking-resistant design of thermal barrier coatings with long life span[J]. Journal of Aeronautical Materials,2022,42(1):1-14. doi: 10.11868/j.issn.1005-5053.2021.000130 [4] 种南京,柳琪,李天庆,等. 厚质梯度NiCoCrAlY/YSZ热障涂层的制备及结合性能[J]. 铸造技术,2021,42(7):555-559.CHONG N J,LIU Q,LI T Q,et al. Bonding property of high-thickness gradient NiCoCrAlY/YSZ thermal barrier coatings[J]. Foundry Technology,2021,42(7):555-559. [5] 周雳,邢志国,王海斗,等. 等离子喷涂金属/陶瓷梯度热障涂层研究进展[J]. 表面技术,2020,49 (1):122-131. doi: 10.16490/j.cnki.issn.1001-3660.2020.01.015ZHOU L,XING Z G,WANG H D,et al. Research progress of metal/ceramic gradient thermal barrier coatings by plasma spraying[J]. Surface Technology,2020,49 (1):122-131. doi: 10.16490/j.cnki.issn.1001-3660.2020.01.015 [6] 王涛,朱磊,唐杰,等. 双送粉激光熔覆CoCrAlSiY/YSZ梯度涂层微观组织及热振性能[J]. 中国机械工程,2021,32(15):1854-1860. doi: 10.3969/j.issn.1004-132X.2021.15.011WANG T,ZHU L,TANG J,et al. Microstructure and thermal shock properties of CoCrAlSiY/YSZ gradient coatins by double-powder-feeding laser cladding[J]. China Mechanical Engineering,2021,32(15):1854-1860. doi: 10.3969/j.issn.1004-132X.2021.15.011 [7] 刘文光,丰霞瑶,姚婉,等. 功能梯度圆柱壳的热应力与热传导分析[J]. 航空材料学报,2019,39(6):81-89. doi: 10.11868/j.issn.1005-5053.2018.000127LIU W G,FENG X Y,YAO W,et al. Analysis on thermal stress and heat conduction of functionally graded cylindrical shell[J]. Journal of Aeronautical Materials,2019,39(6):81-89. doi: 10.11868/j.issn.1005-5053.2018.000127 [8] 程西云,张政科. 梯度结构对氧化铝/镍梯度涂层抗热应力的影响[J]. 润滑与密封,2016,41(10):13-18. doi: 10.3969/j.issn.0254-0150.2016.10.003CHENG X Y,ZHANG Z K. Influences of gradient structure on thermal shear stresses of Al2O3/Ni gradient coatings[J]. Lubrication Engineering,2016,41(10):13-18. doi: 10.3969/j.issn.0254-0150.2016.10.003 [9] 庞铭,张啸寒. 结构参数对等离子喷涂Mo/8YSZ功能梯度热障涂层残余应力的影响[J]. 航空材料学报,2020,40(6):23-32. doi: 10.11868/j.issn.1005-5053.2019.000065PANG M,ZHANG X H. Effect of structural parameters on the residual stress of Mo/8YSZ functionally graded thermal barrier coating prepared by plasma spraying[J]. Journal of Aeronautical Materials,2020,40(6):23-32. doi: 10.11868/j.issn.1005-5053.2019.000065 [10] BAIG M N, KHALID F A, KHAN F N, et al. Properties and residual stress distribution of plasma sprayed magnesia stabilized zirconia thermal barrier coatings[J]. Ceramics International, 2014, 40(3): 4853-4868. [11] BHATTACHARYYA A, MAURICE D. Residual stresses in functionally graded thermal barrier coatings [J]. Mechanics of Materials, 2019, 129: 50-56. [12] 郭蕙敏,李博,张立群,等. 真实TGO界面形貌对热障涂层界面应力的影响[J]. 金属热处理,2021,46(11):232-235. doi: 10.13251/j.issn.0254-6051.2021.11.041GUO H M,LI B,ZHANG L Q,et al. Effect of real TGO interface topography on interface stress of thermal barrier coatings[J]. Heat Treatment of Metals,2021,46(11):232-235. doi: 10.13251/j.issn.0254-6051.2021.11.041 [13] 李佐君,梁伟,钟舜聪,等. TGO及初始裂纹对热障涂层裂纹形核与扩展影响的有限元分析[J]. 失效分析与预防,2021,16(5):300-308.LI Z J,LIANG W,ZHONG S C,et al. Influence of TGO and initial crack on crack nucleation and propagation in thermal barrier coatings based on finite element analysis[J]. Failure Analysis and Prevention,2021,16(5):300-308. [14] WEI Z Y, CAI H N, MENG G H, et al. An innovative model coupling TGO growth and crack propagation for the failure assessment of lamellar structured thermal barrier coatings[J]. Ceramics International, 2020, 46(2): 1532-1544. [15] WANG L, ZHONG X H, ZHAO Y X, et al. Design and optimization of coating structure for the thermal barrier coatings fabricated by atmospheric plasma spraying via finite element method[J]. Journal of Asian Ceramic Societies, 2014, 2(2): 102-116. [16] ZHOU Y C,HASHIDA T. Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system[J]. International Journal of Solids and Structures,2001,38(24-25):4235-4264. doi: 10.1016/S0020-7683(00)00309-7 [17] 何周理,徐德昇. 二维编织复合材料弹性模量分析[J]. 装备制造技术,2016(3):51-53. doi: 10.3969/j.issn.1672-545X.2016.03.015HE Z L,XU D S. The transmitter design parameters theoretical analysis of a new generation of weather radar[J]. Equipment Manufacturing Technology,2016(3):51-53. doi: 10.3969/j.issn.1672-545X.2016.03.015 [18] 凌锡祥,王玉璋,王星,等. 层状热障涂层孔隙微结构对其隔热性能影响的数值研究[J]. 中国有色金属学报,2015,25(2):408-414. doi: 10.19476/j.ysxb.1004.0609.2015.02.018LING X X,WANG Y Z,WANG X,et al. Numerical study of effect of pore microstructure of layered thermal barrier coatings on thermal insulation performance[J]. Journal of the Chinese Society of Rare Earths,2015,25(2):408-414. doi: 10.19476/j.ysxb.1004.0609.2015.02.018 [19] RAJABI M, ABOUTALEBI M R, SEYEDEIN S H, et al. Simulation of residual stress in thick thermal barrier coating (TTBC) during thermal shock: a response surface-finite element modeling[J]. Ceramics International, 2022, 48(4): 5299-5311. [20] 庞铭,刘全秀,张啸寒. 梯度层不同配比对等离子喷涂Mo/8YSZ功能梯度热障涂层残余应力的影响规律研究[J]. 中国稀土学报,2020,38(5):677-687.PANG M,LIU Q X,ZHANG X H. Influence rule of different ratios of gradient layer on residual stress of plasma sprayed Mo/8YSZ functionally graded thermal barrier coating[J]. Journal of the Chinese Society of Rare Earths,2020,38(5):677-687. [21] 于海鹏,桑玮玮,李振军,等. Sm2Ce2O7-YSZ功能梯度热障涂层热冲击性能计算机模拟[J]. 中国陶瓷,2018,54(1):28-33.YU H P,SANG W W,LI Z J,et al. Computer simulation of thermal shock resistance of Sm2Ce2O7-YSZ function gradient thermal barrier coatings[J]. China Ceramics,2018,54(1):28-33. [22] EVANS A G,HE M Y,HUTCHINSON J W. Mechanics-based scaling laws for the durability of thermal barrier coatings[J]. Progress in Materials Science,2001,46(3/4):249-271. doi: 10.1016/S0079-6425(00)00007-4 [23] WANG L,WANG Y,SUN X G,et al. Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J]. Ceramics International,2012,38 (5):3595-3606. doi: 10.1016/j.ceramint.2011.12.076 -