军用飞机金属零件激光增材修复技术的研究进展

徐进军 张浩 高德晰 湛阳 江茫 高昆 曾全胜

徐进军, 张浩, 高德晰, 湛阳, 江茫, 高昆, 曾全胜. 军用飞机金属零件激光增材修复技术的研究进展[J]. 航空材料学报, 2023, 43(1): 39-50. doi: 10.11868/j.issn.1005-5053.2022.000076
引用本文: 徐进军, 张浩, 高德晰, 湛阳, 江茫, 高昆, 曾全胜. 军用飞机金属零件激光增材修复技术的研究进展[J]. 航空材料学报, 2023, 43(1): 39-50. doi: 10.11868/j.issn.1005-5053.2022.000076
XU Jinjun, ZHANG Hao, GAO Dexi, ZHAN Yang, JIANG Mang, GAO Kun, ZENG Quansheng. Research progress of laser additive repair technology for military aircraft metal parts[J]. Journal of Aeronautical Materials, 2023, 43(1): 39-50. doi: 10.11868/j.issn.1005-5053.2022.000076
Citation: XU Jinjun, ZHANG Hao, GAO Dexi, ZHAN Yang, JIANG Mang, GAO Kun, ZENG Quansheng. Research progress of laser additive repair technology for military aircraft metal parts[J]. Journal of Aeronautical Materials, 2023, 43(1): 39-50. doi: 10.11868/j.issn.1005-5053.2022.000076

军用飞机金属零件激光增材修复技术的研究进展

doi: 10.11868/j.issn.1005-5053.2022.000076
基金项目: 湖南高新技术产业科技创新引领计划(2020SK2027);湖南省教育厅科学研究优秀青年项目(22B1081)
详细信息
    通讯作者:

    曾全胜(1973—),男,教授,研究方向为飞机激光清洗技术和飞机金属零部件激光增材修复技术,E-mail:zqs_csgx@163.com

  • 中图分类号: TG146.21

Research progress of laser additive repair technology for military aircraft metal parts

  • 摘要: 激光增材修复技术适用于军用飞机金属零件的快速高效修复,是延长飞行服役年限和提升自主航空维修能力的重要推力。本文介绍了选区激光熔化成形、激光直接沉积成形、激光熔覆以及激光-电弧复合增材制造等激光增材修复技术特点,阐述了激光增材修复过程中常见的塌边、表面球化、气孔以及裂纹等不同尺度缺陷类型并提出了相应的调控方法,总结了激光能量密度、搭接率、填充材料供给速度、保护气体流量、时间参数和扫描路径等激光增材修复技术工艺优化特点以及施加外加能场和优化设计专用填充材料改善修复性能。最后,列举了激光增材修复技术在飞机机翼梁、涡轮叶盘、单晶叶片以及起落架等金属部件维修中的应用,并对激光增材修复技术在辅助系统设计、多能场融合、评价标准制定以及可移动激光增减材修复设备研发等未来的研究重点和趋势进行了探讨。

     

  • 图  1  激光增材制造技术原理图  (a)激光选区熔化技术[7-8];(b)激光直接沉积成形技术[9-10]

    Figure  1.  Schematic diagram of laser additive manufacturing technology  (a) laser selective melting technology[7-8];(b) laser direct deposition forming technology[9-10]

    图  2  同轴送粉原理示意图[6]  (a)光外同轴送粉;(b)光内同轴送粉

    Figure  2.  Schematic diagram of coaxial powder feeding[6]   (a) outside-laser coaxial powder feeding; (b) inside-laser coaxial powder feeding

    图  3  LAR成形件塌边现象[16] (a)熔池受力作用示意图;(b)塌陷时光束作用示意图;(b)塌边实物图

    Figure  3.  Edge collapse of LAR formed part[16] (a) schematic diagram of stress action of molten pool;(b) schematic diagram of beam action during collapse;(c) physical photo of edge collapse

    图  4  LAR中球化缺陷 (a)球化缺陷示意图[19];(b)多层FeCr合金球化缺陷实测图[15]

    Figure  4.  Spheroidization defect in laser additive repair (a) schematic diagram of spheroidization defect[19];(b) measured diagram of spheroidizing defects of multilayer FeCr alloy[15]

    图  5  LAR中气孔缺陷[24-25] (a)气泡上浮过程;(b)成形件中典型气孔缺陷

    Figure  5.  Hole defect in laser additive repair[24-25] (a) bubble rising process;(b) typical air hole defects in formed part

    图  6  LAR中裂纹缺陷[27] (a)应力作用示意图;(b)裂纹形成示意图;(c)裂纹形貌

    Figure  6.  Crack defect in laser additive repair[27] (a) schematic diagram of stress action;(b) schematic diagram of crack formation;(c) crack morphology

    图  7  等效搭接熔覆层横截面示意图

    Figure  7.  Schematic diagram of cross section of equivalent lap cladding layer

  • [1] XIA R B,ZHAO J B,ZHANG T Y,et al. Detection method of manufacturing defects on aircraft surface based on fringe projection[J]. Optik,2020,280:164332.
    [2] 潘新,张英伟,刘艳梅,等. 金属增材制造技术应用于军用飞机维修保障浅析[J]. 航空制造技术,2021,64(3):34-43.

    PAN X,ZHANG Y W,LIU Y M,et al. Applications of metal additive manufacturing technology in maintenance and support for military aircraft[J]. Aeronautical Manufacturing Technology,2021,64(3):34-43.
    [3] 杨爱民,秦仁耀,张国栋,等. 飞机金属零件焊接及增材制造修复研究与应用现状[J]. 电焊机,2021,51(8):79-87. doi: 10.7512/j.issn.1001-2303.2021.08.09

    YANG A M,QIN R Y,ZHANG G D,et al. Research and application status of welding and additive manufacturing repair of aircraft metal parts[J]. Electric Welding Machine,2021,51(8):79-87. doi: 10.7512/j.issn.1001-2303.2021.08.09
    [4] 梁帅. 金属零件缺陷的激光修复技术研究[D]. 石家庄: 河北科技大学, 2019.

    LIANG S. Study on laser repair technology of metal parts defects[D]. Shijiazhuang: Hebei University of Science and Technology, 2019.
    [5] ZIA U A,MUHAMMAD Y K,EHTSHAM R. Laser-aided additive manufacturing of high entropy alloys:processes, properties, and emerging applications[J]. Journal of Manufacturing Processes,2022,78:131-171. doi: 10.1016/j.jmapro.2022.04.014
    [6] TAN C L,FEI W,SUI S,et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools and Manufacture,2021,170:103804. doi: 10.1016/j.ijmachtools.2021.103804
    [7] TAN Q Y,ZHANG J Q,MO N,et al. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles[J]. Additive Manufacturing,2020,32:101034. doi: 10.1016/j.addma.2019.101034
    [8] LI L B,LI R D,YUAN T C,et al. Microstructures and mechanical properties of Si and Zr modified Al-Zn-Mg-Cu alloy—a comparison between selective laser melting and spark plasma sintering[J]. Journal of Alloys and Compounds,2020,821:153520. doi: 10.1016/j.jallcom.2019.153520
    [9] BOCK F E,HERRNRING J,FROEND M,et al. Experimental and numerical thermo-mechanical analysis of wire-based laser metal deposition of Al-Mg alloys[J]. Journal of Manufacturing Processes,2021,64(2):982-995.
    [10] SINGH A,RAMAKRISHNAN A,BAKER D,et al. Laser metal deposition of nickel coated Al 7050 alloy[J]. Journal of Alloys and Compounds,2017,719:151-158. doi: 10.1016/j.jallcom.2017.05.171
    [11] ZHANG J C,SHI S H,FU G Y,et al. Analysis on surface finish of thin-wall parts by laser metal deposition with annular beam[J]. Optics and Laser Technology,2019,119:105605. doi: 10.1016/j.optlastec.2019.105605
    [12] LI L Q,SHEN F M,ZHOU Y D,et al. Comparative study of stainless steel AISI 431 coatings prepared by extreme-high-speed and conventional laser cladding[J]. Journal of Laser Applications,2019,31(4):042009. doi: 10.2351/1.5094378
    [13] 申发明. 超高速激光熔覆AISI431不锈钢涂层组织与耐蚀机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    SHEN F M. Research on microstructure and corrosion resistance mechanism of AISI431 stainless steel coating prepared by extra high laser cladding[D]. Harbin: Harbin Institute of Technology, 2020.
    [14] 苗秋玉. 铝合金结构激光-电弧复合增材制造研究[D]. 大连: 大连理工大学, 2019.

    MIAO Q Y. Study on Laser-arc hybrid additive manufacturing for block structure of aluminum alloy[D]. Dalian: Dalian University of Technology, 2019.
    [15] 岳海涛. 采煤机滚筒螺旋叶片激光增材再制造关键技术研究[D]. 辽宁阜新: 辽宁工程技术大学, 2021.

    YUE H T. Research on the key technology of laser additive remanufacturing of shearer spiral blade[D]. Fuxin, Liaoning: Liaoning University of Engineering and Technology, 2021.
    [16] 魏亚风,路媛媛,陈浩,等. 薄壁结构铝合金激光粉末沉积工艺及性能研究[J]. 应用激光,2021,41(3):548-555.

    WEI Y F,LU Y Y,CHEN H,et al. Study on process and properties of aluminum alloy thin walled structure part by laser powder deposition[J]. Applied laser,2021,41(3):548-555.
    [17] 杨光,刘欢欢,周佳平,等. 激光沉积修复某型飞机垂尾梁研究[J]. 红外与激光工程,2017,46(2):64-72.

    YANG G,LIU H H,ZHOU J P,et al. Research on laser deposition repair aircraft vertical tail beam[J]. Infrared and Laser Engineering,2017,46(2):64-72.
    [18] 熊征. 激光熔覆强化和修复薄壁型零部件关键技术基础研究[D]. 武汉: 华中科技大学, 2009.

    XIONG Z. Research on laser powder deposition process and properties of thin-walled aluminum alloy[D]. Wuhan: Huazhong University of Science and Technology, 2009.
    [19] 张晓博,党新安,杨立军. 选择性激光熔化成形过程的球化反应研究[J]. 激光与光电子学进展,2014,51(6):1-6.

    ZHANG X B,DANG X A,YANG L J. Study on balling phenomena in selective laser melting[J]. Laser & Optoelectronics Progress,2014,51(6):1-6.
    [20] 祝弘滨,华倩,李瑞迪,等. 激光定向能量沉积增材修复5083铝合金组织与力学性能[J]. 粉末冶金材料科学与工程,2022,27(1):45-55. doi: 10.19976/j.cnki.43-1448/TF.2021095

    ZHU H B,HUA Q,LI R D,et al. Microstructures and mechanical properties of 5083 aluminum alloy repaired by laser directed energy deposition[J]. Materials Science and Engineering of Powder Metallurgy,2022,27(1):45-55. doi: 10.19976/j.cnki.43-1448/TF.2021095
    [21] ARBO S M,TOMOVIC P S,AUNEMO J,et al. On weldability of aerospace grade Al-Cu-Li alloy AA2065 by wire-feed laser metal deposition[J]. Journal of Advanced Joining Processes,2022,5:100096. doi: 10.1016/j.jajp.2022.100096
    [22] GOODARZI D M,PEKKARINEN J,SALMINEN A. Effect of process parameters in laser cladding on substrate melted areas and the substrate melted shape[J]. Journal of Laser Applications,2015,27(2):29201.
    [23] FU J,LI B,SONG X,et al. Multi-scale defects in powder-based additively manufactured metals and alloys[J]. Journal of Materials Science & Technology,2022,122:165-199.
    [24] BENOIT M J,SUN S D,BRANDT M,et al. Processing window for laser metal deposition of Al 7075 powder with minimized defects[J]. Journal of Manufacturing Processes,2021,64:1484-1492. doi: 10.1016/j.jmapro.2021.02.031
    [25] 董世运, 李福泉, 闫世兴. 激光增材再制造技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2019.

    DONG S Y, LI F Q, YAN S X. Remanufacturing technology of laser additive[M]. Harbin: Harbin Institute of Technology Press, 2019
    [26] MARTIN J H,YAHATA B D,HUNDLEY J M,et al. 3D printing of high-strength aluminum alloys[J]. Nature,2017,549:365-370. doi: 10.1038/nature23894
    [27] LI L,MENG X K,HUANG S,et al. Investigating the effect of the scanning speed on the characteristics of Al-Li alloy fabricated by selective laser melting[J]. Journal of Manufacturing Processes,2022,75:719-728. doi: 10.1016/j.jmapro.2022.01.040
    [28] LI X W,LI D W,LI G,et al. Microstructure, mechanical properties, aging behavior, and corrosion resistance of a laser powder bed fusion fabricated Al-Zn-Mg-Cu-Ta alloy[J]. Materials Science and Engineering:A,2021,832:142364.
    [29] 张可召,何超威,林雨杨,等. 激光熔覆修复5A06铝合金组织及力学性能[J]. 激光与光电子学进展,2020,57(23):1-7.

    ZHANG K Z,HE C W,LIN Y Y,et al. Microstructure and mechanical properties of laser cladding repaired 5A06 alloy[J]. Laser & Optoelectronics Progress,2020,57(23):1-7.
    [30] LI L B,LI R D,YUAN T C,et al. Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu alloy by Si and Zr microalloying[J]. Materials Science and Engineering:A,2020,787:139492. doi: 10.1016/j.msea.2020.139492
    [31] GUO N,WU D,WANG G H,et al. Investigation on underwater wire-feed laser deposition of 5052 aluminum alloy[J]. Journal of Manufacturing Processes,2022,76:687-694. doi: 10.1016/j.jmapro.2022.02.050
    [32] GU D D,RAO X W,DAI D H,et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites:processing optimization, microstructure evolution and mechanical properties[J]. Additive Manufacturing,2019,29:100801. doi: 10.1016/j.addma.2019.100801
    [33] 李云峰. 大型齿圈齿面激光熔覆高厚度耐磨耐冲击涂层技术研究[D]. 长春: 长春理工大学, 2021.

    LI Y F. Laser cladding a high-thickness abrasion and impact resistant coating on large ring gear surface[D]. Changchun: Changchun University of Technology, 2021.
    [34] 唐皓州,李瑞迪,祝弘滨,等. Al-Mg-Sc合金粉末激光定向沉积修复Al-Zn-Mg-Cu铝合金基板的组织及力学性能[J]. 粉末冶金材料科学与工程,2022,27(1):111-120. doi: 10.19976/j.cnki.43-1448/tf.2021101

    TANG H Z,LI R D,ZHU H B,et al. Microstructure and mechanical property of Al-Zn-Mg-Cu aluminum alloy substrate repaired by laser directed energy deposition with Al-Mg-Sc alloy powder[J]. Materials Science and Engineering of Powder Metallurgy,2022,27(1):111-120. doi: 10.19976/j.cnki.43-1448/tf.2021101
    [35] DEVOJNO O G,FELDSHTEIN E,KARDAPOLAVA M A,et al. On the formation features, structure, microhardness and tribological behavior of single tracks and coating layers formed by laser cladding of Al-Fe powder bronze[J]. Surface and Coatings Technology,2019,358:195-206. doi: 10.1016/j.surfcoat.2018.11.014
    [36] LAI Q,RALPH A,YAN W Y,et al. Influences of depositing materials, processing parameters and heating conditions on material characteristics of laser-cladded hypereutectoid rails[J]. Journal of Materials Processing Technology,2018,263:1-20.
    [37] ZHAO X,DONG S Y,YAN S X,et al. The effect of different scanning strategies on microstructural evolution to 24CrNiMo alloy steel during direct laser deposition[J]. Materials Science and Engineering:A,2019,771:138557.
    [38] GUO L,GU J,GAN B,et al. Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a selective laser melted FeCoCrNiMn-(N, Si) high entropy alloy[J]. Journal of Alloys and Compounds,2021,865(8):158892.
    [39] WANG H,HU Y B,NING F D,et al. Ultrasonic vibration-assisted laser engineered net shaping of Inconel 718 parts: effects of ultrasonic frequency on microstructural and mechanical properties[J]. Journal of Materials Processing Technology,2020,276:116395. doi: 10.1016/j.jmatprotec.2019.116395
    [40] YAO Z H,YU X W,NIE Y B,et al. Effects of three-dimensional vibration on laser cladding of SS316L alloy[J]. Journal of Laser Applications,2019,31(3):032013. doi: 10.2351/1.5098127
    [41] CONG W L,NING F D. A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel[J]. International Journal of Machine Tools & Manufacture,2017,121:61-69.
    [42] 王梁,夏洪超,胡勇,等. 电磁复合场对V型窄槽激光再制造区孔隙缺陷的抑制作用[J]. 中国激光,2020,47(6):1-8.

    WANG L,XIA H C,HU Y,et al. Porosity defects suppression in narrow V-groove laser remanufacturing zone through electromagnetic composite field[J]. Chinese Journal of Lasers,2020,47(6):1-8.
    [43] CHENG H M,LIU F C,YANG G,et al. Microstructure and tensile property of electromagnetic stirring assisted laser repaired Inconel718 superalloy[J]. Rare Metal Materials and Engineering,2018,47(10):2949-2956. doi: 10.1016/S1875-5372(18)30216-9
    [44] 刘奋成,王晓光,程洪茂,等. 电磁辅助激光成形修复GH4169合金Laves相分析[J]. 稀有金属材料与工程,2019,48(11):3593-3599.

    LIU F C,WANG X G,CHEN H M,et al. Laves phase precipitation of laser repaired GH4169 superalloy assisted by electromagnetic Stirring[J]. Rare Metal Materials and Engineering,2019,48(11):3593-3599.
    [45] 窦磊,郭双全,谢东,等. 某型航空发动机涡轮支承轴承座激光增材修复研究[J]. 航空维修与工程,2017(6):53-54. doi: 10.3969/j.issn.1672-0989.2017.06.020

    DOU L,GUO S Q,XIE D,et al. Research on laser additive repairing of turbine bear for aero-engine[J]. Aviation Maintenance & Engineering,2017(6):53-54. doi: 10.3969/j.issn.1672-0989.2017.06.020
    [46] 刘业胜,韩品连,胡寿丰,等. 金属材料激光增材制造技术及在航空发动机上的应用[J]. 航空制造技术,2014,454(10):62-67. doi: 10.3969/j.issn.1671-833X.2014.10.007

    LIU Y S,HAN P L,HU S F,et al. Development of laser additive manufacturing with metallic materials and its application in aviation engines[J]. Aeronautical Manufacturing Technology,2014,454(10):62-67. doi: 10.3969/j.issn.1671-833X.2014.10.007
    [47] GAUMANN M,BEZENCON,CANALIS P,et al. Single-crystal laser deposition of superalloys: processing-microstructure maps[J]. Acta Materialia,2001,49:1051-1062. doi: 10.1016/S1359-6454(00)00367-0
    [48] 秦仁耀,张学军,于波,等. 飞机端轴颈的激光3D熔覆维修[J]. 航空维修与工程,2015,9:125-126. doi: 10.3969/j.issn.1672-0989.2015.09.043

    QIN R Y,ZHANG X J,YU B,et al. 3D laser cladding repair of aircraft end journal[J]. Aviation Maintenance & Engineering,2015,9:125-126. doi: 10.3969/j.issn.1672-0989.2015.09.043
    [49] LIU T,GAO Z N,LING W L,et al. Effect of heat accumulation on the microstructure of Invar alloy manufactured by multi-layer multi-pass laser melting deposition [J]. Optics and Laser Technology,2021,144:107407. doi: 10.1016/j.optlastec.2021.107407
    [50] 刘江红,孙秀京,李凤全,等. 激光增材修复技术在氢氧发动机上的应用[J]. 应用激光,2016,36(6):670-673.

    LIU J H,SUN X J,LI F Q,et al. Application of laser additive repair technology in the hydrogen engine[J]. Applied Laser,2016,36(6):670-673.
    [51] CIS W,LIANG J J,LI J G,et al. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. Journal of Materials Science and Technology,2020,42(10):23-34.
  • 加载中
图(7)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  48
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-06-08
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回