Research progress of microstructure transformation and kinetics in Ti2AlNb-based alloy
-
摘要: 起源于钛合金的Ti2AlNb基合金作为一种新型高温结构材料,具有优秀的室温韧性、抗裂性能、高温强度及抗氧化性,在航空航天领域呈现出广阔的应用前景。研究Ti2AlNb基合金的微观组织转变机制及相关动力学,对材料成分设计和加工工艺的优化以获得所需性能具有重要的意义。本文总结了Ti2AlNb基合金中组织转变及其动力学机制的研究进展和不足,重点阐述了Ti2AlNb基合金内B2相和O相的生长动力学研究现状,并指出Ti2AlNb基合金在有序无序转变动力学、缺陷密度相关动力学等方面缺乏研究。未来Ti2AlNb基合金需要结合逐渐全面的动力学研究成果来建立组织演变理论模型,从而优化合金成分及工艺,以满足更加复杂严峻的服役环境。
-
关键词:
- Ti2AlNb基合金 /
- 相变 /
- 动力学 /
- 微观组织调控
Abstract: As a new high-temperature structural material, Ti2AlNb-based alloy originated from titanium alloy has excellent room temperature toughness, crack resistance, high temperature strength, oxidation resistance and other advantages, showing a broad application prospect in the aerospace field. To study the microstructure transformation mechanism and related kinetics of Ti2AlNb alloy is of great significance to the alloy composition design and process optimization to obtain the required properties. This paper summarizes the research progress and deficiency of the structure transformation and the dynamic mechanism in Ti2AlNb-based alloy, focuses on the research status of the growth kinetics of B2 phase and O phase at home and abroad in recent years, and points out that there is lack of research on the order disorder transformation kinetics, defect density related dynamics of Ti2AlNb-based alloy. In the future, Ti2AlNb-based alloy needs to be combined with gradually comprehensive dynamics research results to establish a theoretical model of microstructure evolution, so as to optimize alloy composition and process to meet more complex and severe service environment.-
Key words:
- Ti2AlNb-based alloy /
- phase transformation /
- dynamics /
- microstructure regulation
-
图 7 O相生长动力学研究结果[40] (a)不同温度下层状O相厚度与时间的关系; (b)不同温度下ln d与ln t 的关系;(c)不同时效时间下
${\rm{ln}}( \dfrac{d{\rm{o}}^2}{t}) $ 与1/ T 的关系Figure 7. Results of O phase growth kinetics[40] (a) relationship between thickness and time of lamellar O phase at different temperatures; (b) relationship between ln d and ln t at different temperatures; (c) relationship between
${\rm{ln}}( \dfrac{d{\rm{o}}^2}{t})$ and 1/ T under different aging time -
[1] 王清江,刘建荣,杨锐,等. 高温钛合金的现状与前景[J]. 航空材料学报,2014,34(4):1-26. doi: 10.11868/j.issn.1005-5053.2014.4.001WANG Q J,LIU J R,YANG Y,et al. High temperature titanium alloys: status and perspective[J]. Journal of Aeronautical Materials,2014,34(4):1-26. doi: 10.11868/j.issn.1005-5053.2014.4.001 [2] 李金山,张铁邦,常辉,等. TiAl基金属间化合物的研究现状与发展趋势[J]. 中国材料进展,2010,29(3):1-5.LI J S,ZHANG T B,CHANG H,et al. Recent achievements and future directions of TiAl-based intermetallic compounds[J]. Materials China,2010,29(3):1-5. [3] XU X J,LIN J P,WANG Y L,et al. Microstructure and tensile properties of as-cast Ti-45Al-(8-9) Nb-(W, B, Y) alloy[J]. Journal of Alloys and Compounds,2006,414(1/2):131-136. doi: 10.1016/j.jallcom.2005.02.110 [4] 孙福生,高文,曹春晓. Ti3Al基合金室温拉伸形变机制的研究[J]. 航空材料学报,1995,15(2):14-20.SUN F S,GAO W,CAO C X. Study on tensile deformation mechanism of a Ti3Al alloy at room temperature[J]. Journal of Aeronautical Materials,1995,15(2):14-20. [5] BANERJEE D,GOGIA A K,NANDI T K,et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy[J]. Acta Metallurgica,1988,36(4):871-882. doi: 10.1016/0001-6160(88)90141-1 [6] ZHANG Y,CAI Q,MA Z,et al. Solution treatment for enhanced hardness in Mo-modified Ti2AlNb-based alloys[J]. Journal of Alloys and Compounds,2019,805(15):1184-1190. [7] ZHANG H,YAN N,LIANG H,et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: a review[J]. Journal of Materials Science & Technology,2021,80(30):203-216. [8] BANERJEE D. The intermetallic Ti2AlNb[J]. Progress in Materials Science,1997,42(1/4):135-158. doi: 10.1016/S0079-6425(97)00012-1 [9] 杜刚,崔林林,雷强,等. O相合金Ti2AlNb的研究进展[J]. 中国材料进展,2018,37(1):68-73.DU G,CUI L L,LEI Q,et al. Research progress of O-phase alloy Ti2AlNb[J]. Materials China,2018,37(1):68-73. [10] EMURA S,ARAOKA A,HAGIWARA M. B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy[J]. Scripta Materialia,2003,48(5):629-634. doi: 10.1016/S1359-6462(02)00462-1 [11] GOYAL K,SARDANA N. Phase stability and microstructural evolution of Ti2AlNb alloys:a review[J]. Materials Today:Proceedings,2021,41(4):951-968. [12] SADI F A,SERVANT C. On the B2→O phase transformation in Ti-Al-Nb alloys[J]. Materials Science and Engineering:A,2003,346(1/2):19-28. doi: 10.1016/S0921-5093(02)00507-5 [13] SUWAS S,RAY R K. Texture evolution during β → O → α2 and β → α2 phase transformations in a Ti3Al-Nb alloy[J]. Materials Science and Engineering:A,2005,391(1/2):249-255. doi: 10.1016/j.msea.2004.09.003 [14] HUANG Y,LIU Y,LI C,et al. Microstructure evolution and phase transformations in Ti-22Al-25Nb alloys tailored by super-transus solution treatment[J]. Vacuum,2019,161(3):209-219. [15] BOEHLERT C J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy[J]. Journal of Phase Equilibria,1999,20(2):101. doi: 10.1007/s11669-999-0007-z [16] ZHANG H,LI C,MA Z,et al. Effect of dual aging treatments on phase transformation and microstructure in a pre-deformed Ti2AlNb-based alloy containing O + β/B2 structures[J]. Vacuum,2019,164(6):175-180. [17] WU Y,YANG D Z, SONG G M. The formation mechanism of the O phase in a Ti3Al-Nb alloy[J]. Intermetallics,2000,8(5/6):629-636. [18] MURALEEDHARAN K,GOGIA A K,NANDY T K,et al. Transformations in a Ti-24Al-15Nb alloy: part I phase equilibria and microstructure[J]. Metallurgical Transactions A,1992,23(2):401-415. doi: 10.1007/BF02801158 [19] 沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报,2013,49(11):1286-1294. doi: 10.3724/SP.J.1037.2013.00607SHEN J,FENG A H. Research progress of microstructure modulation and hot forming of Ti2AlNb based alloy[J]. Acta Metallurgica Sinica,2013,49(11):1286-1294. doi: 10.3724/SP.J.1037.2013.00607 [20] WU Y,ZHEN L,YANG D Z,et al. TEM observation of the α2/O interface in a Ti3Al-Nb alloy[J]. Materials Letters,1997,32(5/6):319-323. doi: 10.1016/S0167-577X(97)00057-8 [21] KHADZHIEVA O G,ILLARIONOV A G,POPOV A A. Effect of aging on structure and properties of quenched alloy based on orthorhombic titanium aluminide Ti2AlNb[J]. The Physics of Metals and Metallography,2014,115(1):12-20. doi: 10.1134/S0031918X14010098 [22] WANG W,ZENG W,LI D,et al. Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition[J]. Materials Science and Engineering:A,2016,662(26):120-128. [23] KAZANTSEVA N V,DEMAKOV S L,POPOV A A. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb IV formation of the trans-formation twins upon the α2 → O phase trans-formation[J]. The Physics of Metals and Metallography,2007,103(4):388-394. doi: 10.1134/S0031918X07040114 [24] 杨越. 放电等离子烧结Ti-22Al-25Nb合金的微观组织与力学性能[D]. 秦皇岛: 燕山大学, 2018.YANG Y. Microstructure and mechanical properties of spark plasma sintered Ti-22Al-25Nb alloy[D]. Qinhuangdao: Yanshan University, 2018. [25] MURALEEDHARAN K,BANERJEE D,BANERJEE S,et al. The α2-to-O transformation in Ti-Al-Nb alloys[J]. Philosophical Magazine A,1995,71(5):1011-1036. doi: 10.1080/01418619508236234 [26] KAZANTSEVA N V,DEMAKOV S L,POPOV A A. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb III formation of transformation twins upon the B2 → O phase transformation[J]. The Physics of Metals and Metallography,2007,103(4):378-387. doi: 10.1134/S0031918X07040102 [27] 党薇. Ti2AlNb基合金显微组织演化及恒温氧化行为[D]. 西安: 西北工业大学, 2016.DANG W. Microstructure evolution and isothermal oxidation behavior of Ti2AlNb based alloys[D]. Xi’an: Northwestern Polytechnical University, 2016. [28] BENDERSKY L A,BOETTINGER W J,ROYTBURD A. Coherent precipitates in the bcc /orthorhombic two-phase field of the Ti-Al-Nb system[J]. Acta metallurgica et materialia,1991,39(8):1959-1969. doi: 10.1016/0956-7151(91)90165-W [29] 王伟. 基于三种典型显微组织的Ti-22Al-25Nb合金力学性能研究[D]. 西安: 西北工业大学, 2015.WANG W. Research on three typical microstructures and mechanical properties of Ti-22Al-25Nb alloy[D]. Xi’an: Northwestern Polytechnical University, 2015. [30] 宋丽平,徐广胜,罗怀晓. 热处理工艺对Ti2AlNb合金棒材显微组织和性能的影响[J]. 热加工工艺,2021,50(6):144-146.SONG L P,XU G S,LUO H X. Effect of heat treatment process on microstructure and properties of Ti2AlNb alloy bar[J]. Hot Working Technology,2021,50(6):144-146. [31] ESIN V A,MALLICK R,DADÉ M,et al. Combined synchrotron X-ray diffraction, dilatometry and electrical resistivity in situ study of phase transformations in a Ti2AlNb alloy[J]. Materials Characterization,2020,169(11):110654. [32] 徐斌. 基于加工图理论的O相合金高温变形机理研究[D]. 西安: 西北工业大学, 2007.XU B. Hot deformation mechanisms of O phase alloy using processing maps[D]. Xi’an: Northwestern Polytechnical University, 2007. [33] COWEN C J,BOEHLERT C J. Microstructure, creep, and tensile behavior of a Ti-21Al-29Nb orthorhombic+B2 alloy[J]. Intermetallics,2006,14(4):412-422. doi: 10.1016/j.intermet.2005.08.006 [34] XUE C,ZENG W,XU B,et al. B2 grain growth and particle pinning effect of Ti-22Al-25Nb orthorhombic intermetallic alloy during heating process[J]. Intermetallics,2012,29(10):41-47. [35] 薛晨. 等温锻造Ti-22Al-25Nb合金的显微组织演变与力学性能研究[D]. 西安: 西北工业大学, 2014.XUE C. Microstructure evolution and mechanical properties of isothermal forging Ti-22Al-25Nb alloy[D]. Xi’an: Northwestern Polytechnical University, 2014. [36] BOEHLERT C J,MAJUMDAR B S,SEETHARAMAN V,et al. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys[J]. Metallurgical and Materials Transactions: A,1999,30(9):2305-2323. doi: 10.1007/s11661-999-0240-4 [37] BANERJEE D,NANDY T K,GOGIA A K. Site occupation in the ordered beta phase of ternary Ti-Al-Nb alloys[J]. Scripta metallurgica,1987,21(5):597-600. doi: 10.1016/0036-9748(87)90367-X [38] MURALEEDHARAN K,NANDY T K,BANERJEE D,et al. Transformations in a Ti-24AI-15Nb Alloy: part II. a composition invariant β0→ O transformation[J]. Metallurgical Transactions A,1992,23(2):417-431. doi: 10.1007/BF02801159 [39] VASUDEVAN V K,YANG J,WOODFIELD A P. On the {beta} to B2 ordering temperature in a Ti-22Al-26Nb orthorhombic titanium aluminide[J]. Scripta Materialia,1996,35(9):1033. doi: 10.1016/1359-6462(96)00269-2 [40] CHEN X,WEIDONG Z,WEI W,et al. Coarsening behavior of lamellar orthorhombic phase and its effect on tensile properties for the Ti-22Al-25Nb alloy[J]. Materials Science and Engineering:A,2014,611(12):320-325. [41] MOZER B,BENDERSKY L A,BOETTINGER W J,et al. Neutron powder diffraction study of the orthorhombic Ti2AlNb phase[J]. Scripta Metallurgica et Materialia,1990,24(12):2363-2368. doi: 10.1016/0956-716X(90)90094-W [42] MURALEEDHARAN K,NANDY T K,BANERJEE D,et al. Phase stability and ordering behaviour of the O phase in Ti-Al-Nb alloys[J]. Intermetallics,1995,3(3):187-199. doi: 10.1016/0966-9795(95)98930-7 [43] SINGH § A K,SARMA B N,LELE S. Order–disorder transformation of the O phase in Ti2AlNb alloys[J]. Philosophical Magazine,2004,84(27):2865-2876. doi: 10.1080/14786430410001720336 [44] ZAVODOV A V,MEDVEDEV P N,NOCHOVNAYA N A. Effects of dislocation density and concentration of vacancies on growth of O-phase in Ti2AlNb-based alloy[J]. Metal Science and Heat Treatment,2021,62(9):609-614. [45] ZHANG H,ZHANG Y,LIANG H,et al. Effect of the primary O phase on thermal deformation behavior of a Ti2AlNb-based alloy[J]. Journal of Alloys and Compounds,2020,846(15):156458. [46] YANG L,WANG M,LIU B,et al. In situ XRD study on the phase transformations of the gas-atomized Ti-22Al-25Nb powder[J]. Materials Letters,2020,277(15):128378. [47] 张贵华. 含钼Ti2AlNb合金热加工行为及组织性能研究[D]. 北京: 北京科技大学, 2020.ZHANG G H. Research on hot working behavior, microstructure and properties of Ti2AlNb alloy containing Mo[D]. Beijing: University of Science and Technology Beijing, 2020. [48] ZHANG Q,CHEN M,HUI W,et al. Thermal deformation behavior and mechanism of intermetallic alloy Ti2AlNb[J]. Transactions of Nonferrous Metals Society of China,2016,26(3):722-728. doi: 10.1016/S1003-6326(16)64162-6 [49] DU Y,LIU X,LI J,et al. Effect of Mo, V and Zr on the microstructure and mechanical properties of Ti2AlNb alloys[J]. Matec Web of Conferences,2020,321(12):08003. [50] ZHANG Y,LIU Y,YU L,et al. Microstructures and tensile properties of Ti2AlNb and Mo-modified Ti2AlNb alloys fabricated by hot isostatic pressing[J]. Materials Science and Engineering:A,2020,776(3):139043. [51] WANG W,ZENG W,XUE C,et al. Microstructure control and mechanical properties from isothermal forging and heat treatment of Ti-22Al-25Nb orthorhombic alloy[J]. Intermetallics,2015,56(1):79-86. [52] BU Z Q,ZHANG Y G,YANG L,et al. Effect of cooling rate on phase transformation in Ti2AlNb alloy[J]. Journal of Alloys and Compounds,2022,893(10):162364. -