Effect of laser type on hole machining of SiC/SiC composites
-
摘要: SiC/SiC复合材料具有硬度高、脆性大等特点,属于典型的难加工材料,制备冷却孔主要采用激光加工的方法。毫秒激光与纳秒激光主要是利用光热作用迅速加热目标材料,使之熔融、气化,并借助高速气流来移除材料,由于纳秒激光的脉冲持续时间短、能量密度高,因此更容易实现材料的气化,并且引起的热效应较少。本工作分别采用毫秒激光与纳秒激光对SiC/SiC复合材料进行制孔,结果表明,对于直径0.6 mm、倾斜角度为25°的冷却孔,纳秒激光加工时长是毫秒激光的8.7倍;两种激光加工的孔均存在一定的锥度,其中纳秒激光加工的孔锥角为2.12°,毫秒激光加工的孔锥角为1.49°。毫秒激光加工的孔内部、孔出口端与入口端均存在残留物,并且孔周边存在明显的重熔-氧化区与热影响区;而纳秒激光加工的孔内部无明显残留物,激光入口端出现变色现象,出口端无变色现象,无明显重熔-氧化区与热影响区。元素分析结果表明,两种激光加工过程中均能够引起材料的氧化。
-
关键词:
- SiC/SiC复合材料 /
- 激光加工 /
- 陶瓷基复合材料 /
- 纳秒激光 /
- 毫秒激光
Abstract: SiC/SiC composites have the characteristics of high hardness and brittleness, and they are typical difficult materials to process. Laser processing is mainly used to prepare cooling holes. Millisecond and nanosecond lasers mainly use photothermal action to rapidly heat the target material, melt and gasify it, and remove the material with the help of high-speed gas flow. Due to the short pulse duration and high peak power of nanosecond laser, it is easier to realize the gasification of materials, and the thermal effect caused is less. In this paper, millisecond and nanosecond lasers are used to make holes in SiC/SiC composites respectively. The results show that for cooling holes with a diameter of 0.6 mm and an inclination angle of 25 °, the processing time of nanosecond laser is 8.7 times longer than that of millisecond laser. The two kinds of laser processed holes have certain taper, in which the hole cone angle of nanosecond laser processing is 2.12 ° and that of millisecond laser processing is 1.49 °. There are residues in the inner, outlet end and inlet end of the hole processed by millisecond laser, and there are obvious remelting oxidation zone and heat affected zone around the hole. However, there is no obvious residue inside the hole processed by nanosecond laser, there is discoloration at the inlet end of the laser, there is no discoloration at the outlet end, and there is no obvious remelting oxidation zone and heat affected zone. The results of elemental analysis show that both kinds of laser processing can cause the oxidation of materials.-
Key words:
- SiC/SiC composites /
- laser processing /
- ceramic matrix composites /
- nanosecond laser /
- millisecond laser
-
表 1 毫秒激光与纳秒激光单孔加工时间和尺寸精度
Table 1. Single-hole processing time and size precision of millisecond laser and nanosecond laser
Method Processing time
per hole /sMajor axis of
inlet /mmMinor axis of
inlet /mmMajor axis of
outlet /mmMinor axis of
outlet /mmTaper
angle /(°)HM 45 2.007±0.053 0.797±0.022 1.707±0.081 0.627±0.018 1.49 NM 393 1.997±0.019 0.863±0.025 1.592±0.013 0.619±0.005 2.12 -
[1] KATOH Y,SNEAD L L,HENAGER C H,et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials,2014,455(1):387-397. [2] LEBEL L,TURENNE S,BOUKHILI R. An experimental apparatus and procedure for the simulation of thermal stresses in gas turbine combustion chamber panels made of ceramic matrix composites[J]. Journal of Engineering for Gas Turbines and Power,2017,139(9):091502.091501-091502.091511. [3] 刘巧沐,黄顺洲,何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程,2019,47(2):1-10. doi: 10.11868/j.issn.1001-4381.2018.000979LIU Q M,HUANG S Z,HE A J. Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering,2019,47(2):1-10. doi: 10.11868/j.issn.1001-4381.2018.000979 [4] CORMAN G S, LUTHRA K L. Development history of GE’s prepreg melt infiltrated ceramic matrix composite material and applications [M]∥Comprehensive Composite Materials Ⅱ. [S.l.]: Elsevier. 2018: 325-338. [5] CORMAN G, UPADHYAY R, SINHA S, et al. General electric company: selected applications of ceramics and composite materials[M]∥Madsen L D, Svedberg E B, eds. Materials Research for Manufacturing: An Industrial Perspective of Turning Materials into New Products. Cham: Springer International Publishing 2016, 59-91. [6] HALBIG M, JASKOWIAK M, KISER J, et al. Evaluation of ceramic matrix composite technology for aircraft turbine engine applications [C]∥51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Texas: [s. n. ], 2013. [7] HE W,HE S,DU J,et al. Fiber orientations effect on process performance for wire cut electrical discharge machining (WEDM) of 2D C/SiC composite[J]. The International Journal of Advanced Manufacturing Technology,2019,102(1):507-518. [8] ZHANG Y,LIU D,ZHANG W,et al. Hole characteristics and surface damage formation mechanisms of Cf/SiC composites machined by abrasive waterjet[J]. Ceramics International,2022,48(4):5488-5498. doi: 10.1016/j.ceramint.2021.11.093 [9] GAVALDA DIAZ O,GARCIA LUNA G,LIAO Z,et al. The new challenges of machining Ceramic Matrix Composites (CMCs): review of surface integrity[J]. International Journal of Machine Tools and Manufacture,2019,139:24-36. doi: 10.1016/j.ijmachtools.2019.01.003 [10] CHEN X,LOTSHAW W T,ORTIZ A L,et al. Laser drilling of advanced materials: effects of peak power, pulse format, and wavelength[J]. Journal of Laser Applications,1996,8(5):233-239. doi: 10.2351/1.4745427 [11] HÖNIG S,SÜß F,JAIN N,et al. Evaluation of preparation and combustion rig tests of an effusive cooled SiC/SiCN panel[J]. International Journal of Applied Ceramic Technology,2020,17(4):1562-1573. doi: 10.1111/ijac.13501 [12] LI W,ZHANG R,LIU Y,et al. Effect of different parameters on machining of SiC/SiC composites via pico-second laser[J]. Applied Surface Science,2016,364:378-387. doi: 10.1016/j.apsusc.2015.12.089 [13] LIU Y,ZHANG R,LI W,et al. Effect of machining parameter on femtosecond laser drilling processing on SiC/SiC composites[J]. The International Journal of Advanced Manufacturing Technology,2017,96(5/8):1795-1811. [14] ZHAI Z,WEI C,ZHANG Y,et al. Investigations on the oxidation phenomenon of SiC/SiC fabricated by high repetition frequency femtosecond laser[J]. Applied Surface Science,2020,502:144131. doi: 10.1016/j.apsusc.2019.144131 [15] ZHANG R,LI W,LIU Y,et al. Machining parameter optimization of C/SiC composites using high power picosecond laser[J]. Applied Surface Science,2015,330:321-331. doi: 10.1016/j.apsusc.2015.01.010 [16] 刘虎,杨金华,陈子木,等. 熔融渗硅工艺制备的SiCf/SiC复合材料微观结构与性能[J]. 宇航材料工艺,2020(6):48-54.LIU H,YANG J H,CHEN Z M,et al. Microstructure and properties of SiCf/SiC composites fabricated by melt infiltration process[J]. Aerospace Materials & Technology,2020(6):48-54. [17] CHEN J,AN Q,MING W,et al. Investigations on continuous-wave laser and pulsed laser induced controllable ablation of SiCf/SiC composites[J]. Journal of the European Ceramic Society,2021,41(12):5835-5849. doi: 10.1016/j.jeurceramsoc.2021.04.061 [18] HERRMANN M,SCHÖNFELD K,KLEMM H,et al. Laser-supported joining of SiC-fiber/SiCN ceramic matrix composites fabricated by precursor infiltration[J]. Journal of the European Ceramic Society,2014,34:2913-2924. doi: 10.1016/j.jeurceramsoc.2014.03.016 [19] NASIRI NA,PATRA N,NI N,et al. Oxidation behaviour of SiC/SiC ceramic matrix composites in air[J]. Journal of the European Ceramic Society,2016,36(14):3293-3302. doi: 10.1016/j.jeurceramsoc.2016.05.051 [20] ZHAO D L,FAN X M,YIN X W,et al. Oxidation behavior of tyranno ZMI-SiC fiber/SiC-SiBC matrix composite from 800 to 1200 ℃[J]. Materials,2018,11(8):1367-1377. doi: 10.3390/ma11081367 [21] WING BL,HALLORAN JW. Subsurface oxidation of boron nitride coatings on silicon carbide fibers in SiC/SiC ceramic matrix composites[J]. Ceramics International,2018,44(14):17499-17505. doi: 10.1016/j.ceramint.2018.06.221 [22] WANG J,LIU Y,WANG C,et al. Character and mechanism of surface micromachining for C/SiC composites by ultrashort plus laser[J]. Advances in Applied Ceramics,2017,116(2):99-107. doi: 10.1080/17436753.2016.1257101 [23] ZHANG Y,LIU Y,CAO L,et al. Preparation and analysis of micro-holes in C/SiC composites and ablation with a continuous wave laser[J]. Journal of the European Ceramic Society,2021,41(1):176-184. doi: 10.1016/j.jeurceramsoc.2020.08.033 -