Material iterative development of aero carburizing gear steels
-
摘要: 对航空动力传动系统渗碳齿轮材料的代际发展、组分特征与强化机制进行综述。第一代渗碳齿轮钢为低碳中低合金钢,渗层组织通过Fe3C型碳化物进行表面硬化,因合金化元素含量低,第一代渗碳齿轮钢回火抗力差,普遍服役温区≤200 ℃。在第一代渗碳齿轮钢中,16Cr3NiWMoVNbE材料碳化物形成元素含量相对较高,通过临界饱和渗碳工艺方法,该材料可进阶为第二代渗碳齿轮钢进行宽温域服役。第二代渗碳齿轮钢为低碳中高合金钢,通过进一步提高合金化程度,适当提升抗回火能力较强的Mo元素含量,基体回火时,可析出部分回火抗力较高的M2C强化相,整体服役温区提升至≤350 ℃。第三代渗碳齿轮钢为低碳超高合金钢,借助计算材料学,充分发挥出“二次硬化”强化基体效果,能够在500 ℃以下温区长期服役。现有合金结构钢体系的强化机制,无法避免500 ℃以上高温长期服役的强度快速衰减问题,下一代渗碳齿轮材料,将以抗氧化性能优异的铁基合金为基础进行研制。Abstract: In this paper, the intergenerational development, component characteristics, and strengthening mechanism of carburized gear materials for aerospace power transmission systems are reviewed. The first-generation carburized gear steel is low-carbon medium/low-alloy steel, and the surface hardening of the carburized layer structure is realized by Fe3C carbides. Due to the low content of alloying elements, the tempering resistance of the first-generation carburized gear steel is poor, and the general service temperature range is within 200 ℃. Among the first-generation carburized gear steels, the content of carbide-formation elements of 16Cr3NiWMoVNbE material is relatively high. This material can be developed for the second-generation carburized gear steel with a wide-range service temperature through the critical saturation carburization process. The second-generation carburized gear steel is a low-carbon medium/high-alloy steel. Some M2C strengthening phases with high tempering resistance can be precipitated during the tempering process by further improving the alloying degree and appropriately increasing the content of Mo element with strong tempering resistance. The overall service temperature range is raised to 350 ℃. The third-generation carburized gear steel is low-carbon ultra-high alloy steel, and the “secondary hardening” effect works thoroughly via computational methods. Therefore, the material can be used in a temperature range below 500 ℃ for a long time. The existing alloy structural steel system can not avoid the problem of rapid strength decay after long-term service at high temperatures above 500 ℃. Therefore, the next-generation carburized gear materials will be developed based on iron-based alloys with excellent oxidation resistance.
-
Key words:
- gear steel /
- carburization /
- secondary hardening /
- precipitation hardening
-
表 1 常用航空第一代渗碳齿轮钢牌号及合金成分(质量分数/%)[3-8]
Table 1. Brand and component of the 1st generation carburized gear steel(mass fraction/%)[3-8]
Brand C Cr Ni Mo V Nb Mn W Si 9310 0.08-0.13 1.00-1.45 3.00-3.50 0.08-0.15 — — 0.45-0.65 — 0.20-0.35 12CrNi3A 0.10-0.16 0.60-0.90 2.75-3.25 — — — 0.30-0.60 — 0.17-0.37 12Cr2Ni4A 0.10-0.15 1.25-1.75 3.25-3.75 — — — 0.30-0.60 — 0.17-0.37 14CrMnSiNi2MoA 0.11-0.17 1.20-1.60 1.40-2.00 0.20-0.40 — — 0.65-0.95 — 0.35-0.65 18CrNi4A 0.15-0.20 0.80-1.10 3.75-4.25 — — — 0.30-0.60 — ≤0.35 18Cr2Ni4WA 0.13-0.19 1.35-1.65 4.00-4.50 — — — 0.25-0.55 0.80-1.20 0.17-0.37 20CrNi3A 0.17-0.25 0.60-0.90 2.75-3.25 — — — 0.30-0.60 — 0.17-0.37 20Cr2Ni4A 0.17-0.24 1.25-1.75 3.25-3.75 — — — 0.30-0.60 — 0.20-0.40 16Cr3NiWMoVNbE 0.14-0.19 2.60-3.00 1.00-1.50 0.40-0.60 0.35-0.55 0.10-0.20 — 1.00-1.40 0.60-0.90 17CrNiMo6 0.17-0.19 1.60-1.80 1.50-1.70 0.28-0.35 — — 0.65-0.90 — ≤0.30 表 2 常用航空第二代渗碳齿轮钢牌号及合金成分(质量分数/%)[25-26]
Table 2. Brand and component of the 2nd generation carburized gear steel (mass fraction/%)[25-26]
Brand C Cr Ni Mo V Cu Co W Si Mn Al EX 53 0.10 1.05 3.50 3.30 — — — 2.13 — — — Pyrowear 53 0.10 1.00 2.00 3.25 0.08 2.00 — — 0.90 0.40 — Pyrowear 675 0.07 13.0 2.60 0.80 — — 1.60 5.40 — — — M 50Ni L 0.13 4.00 3.50 4.25 1.2 — — — — — — CBS 600 0.19 1.45 — 1.00 — — — — 1.05 0.60 0.06 CBS 1000M 0.14 1.12 2.94 4.77 — — — — — — — Vasco x-2 0.14 4.76 — 1.40 1.40 2.07 — 1.40 — — — 表 3 航空第三代渗碳齿轮钢牌号及合金成分(质量分数/%)[16, 34-35]
Table 3. Brand and component of the 3rd generation carburized gear steel (mass fraction/%)[16, 34-35]
Brand C Cr Ni Mo V Co W CSS-42L 0.12 14.00 2.00 4.75 0.60 12.50 — Ferrium C61 0.15 3.50 9.50 1.10 0.08 18.00 — Ferrium C64 0.11 3.50 7.50 1.75 0.02 16.30 0.20 Ferrium C69 0.10 5.00 3.00 5.00 0.02 28.00 — Ferrium CS62 0.08 9.00 1.50 — 0.20 15.00 — 表 4 9310、Pyrowear 53和Ferrium C61常规热处理后的室温力学性能[25, 39-40]
Table 4. Room mechanical properties of 9310、Pyrowear 53 and Ferrium C61[25, 39-40]
Brand σb/MPa σ0.2/MPa A/% Z/% KIC/
(MPa·m1/2)Akv/J Tempering/
℃Case hardness Matrix hardness 9310 1206 1068 16 53 94 — 150 58-62HRC 34-42HRC Pyrowear53 1172 965 16 66.5 127 118-129 200 59-63HRC 36-44HRC FerriumC61 1655 1551 16 70 143 — 480 60-62HRC 48-50HRC FerriumC64 1579 1372 18 75 94 — 495 62-64HRC 48-50HRC Note: Akv is V-notch impact energy. 表 5 航空用超高强度钢Ferrium S53、AerMet 310及CH 2000冶金成分对比(质量分数/%)[48,50-51]
Table 5. Component comparison of aero-ultra high strength steel Ferrium S53、AerMet 310 and CH 2000(mass fraction/%)[48,50-51]
Brand C Cr Ni Mo V Co W Ferrium S53 0.21 10.0 5.5 2.0 0.3 14.0 1.0 AerMet 310 0.25 2.4 11.0 1.4 — 15.0 — CH 2000 0.12 5.0 6.0 4.0 0.3 14.0 1.0 -
[1] ZARETSKY E V. Bearing and gear steels for aerospace applications[R]. USA: NASA, 1990: 18. [2] 朱祖昌,杨弋涛. 第一代、第二代和第三代轴承钢及其热处理技术的研究进展(一)[J]. 热处理技术与装备,2018,39(6):70-76.ZHU Z C,YANG Y T. Investigative advancement in first, second and third generational bearing steel and heat treatment technics (Ⅰ)[J]. Heat Treatment Technology and Equipment,2018,39(6):70-76. [3] 汤万昌. 我国航空发动机齿轮材料的现状[J]. 航空材料学报, 2003(增刊1): 283.TANG W C. Current status of materials for aero-engine gears in China[J]. Journal of Aeronautical Materials, 2003(suppl 1): 283. [4] 夏恭忱, 石玉珍. 中国航空材料手册[M]. 第一版. 北京: 中国标准出版社, 1988: 86-143, 185-198.XIA G C, SHI Y Z. China aeronautical materials manual[M]. 1st edition. BeiJing: Standards Press of China, 1988: 86-143, 185-198. [5] 李作贤. 新型轧机用渗碳轴承钢SAE9310研制总结[J]. 特钢技术,1996(1):34-38.LI Z X. Preparation of carburization bearing steel SAE9310 used in new rolling mill[J]. Special Steel Technology,1996(1):34-38. [6] 王延忠,陈燕燕,王增强,等. 18CrNi4A完全渗碳件在高温及高应变率下的塑性行为[J]. 北京理工大学学报,2017(3):239-243.WANG Y Z,CHEN Y Y,WANG Z Q,et al. Plasticity of fully carburized material 18CrNi4A under high temperature and strain rate[J]. Transactions of Beijing Institute of Technology,2017(3):239-243. [7] 王成祥. 20Cr2Ni4A钢强韧化研究[J]. 大连工学院学报,1988,27(1):37-43.WANG C X. Study of 20Cr2Ni4A steel strengthening and toughening[J]. Journal of Dalian Institute of Technology,1988,27(1):37-43. [8] 郑福生,付强,何新. 17CrNiMo6高纯净钢锭生产工艺优化[J]. 河北冶金,2021(2):61-63.ZHENG F S,FU Q,HE X. Optimization of 17CrNiMo6 high purity steel bloom production process[J]. Hebei Metallurgy,2021(2):61-63. [9] 崔凯. 18Cr2Ni4WA钢复合等温淬火工艺研究[J]. 煤矿机械,2009,30(7):93-94. doi: 10.3969/j.issn.1003-0794.2009.07.043CUI K. Technical study of 18Cr2Ni4WA steel composite isothermal quenching[J]. Coal Mine Machinery,2009,30(7):93-94. doi: 10.3969/j.issn.1003-0794.2009.07.043 [10] 乐平,黄海清,郁凉峰. 18Cr2Ni4WA钢渗碳后淬火工艺对组织和性能的影响[J]. 热处理,2008,23(5):28-34. doi: 10.3969/j.issn.1008-1690.2008.05.006LE P,HUANG H Q,YU L F. Effect of quenching process on microstructure and property of carburized 18Cr2Ni4WA steel[J]. Heat Treatment,2008,23(5):28-34. doi: 10.3969/j.issn.1008-1690.2008.05.006 [11] 郑经纮,王玉烽,沈甫法,等. 18Cr2Ni4WA钢氮化层强化机理的研究[J]. 金属学报,1985,21(5):5-12.ZHENG J H,WANG Y F,SHEN F F,et al. Strengthening mechanism in nitrided 18Cr2Ni4WA steel[J]. Acta Metallurgica Sinica,1985,21(5):5-12. [12] 侯爱琴,赵剑,任建国,等. 18Cr2Ni4WA钢离子氮化宏观应力的研究[J]. 沈阳工业学院学报,1994,13(1):52-56.HOU A Q,ZHAO J,REN J G,et al. Study of macro-stress on ion nitriding of 18Cr2Ni4WA[J]. Journal of Shenyang Institute of Technology,1994,13(1):52-56. [13] 刘安武,厉勇,王春旭,等. SAE9310钢热变形行为的研究[J]. 钢铁,2009,44(10):82-86. doi: 10.3321/j.issn:0449-749X.2009.10.019LIU A W,LI Y,WANG C X,et al. Investigation on hot deformation behavior of SAE9310[J]. Iron and Steel,2009,44(10):82-86. doi: 10.3321/j.issn:0449-749X.2009.10.019 [14] 吴秋平, 王春旭, 刘宪民, 等. 回火温度对9310钢力学性能及组织的影响[J]. 热加工工艺, 2012, 41(6): 179-180.WU Q P, WANG C X, LIU X M, et al, Influence of tempering temperature on mechanical properties and microstructure of 9310 steel[J]. Hot Working Technology, 2012, 41(6): 179-180. [15] 杨辉. 重载齿轮材料17CrNiMo6钢热处理工艺试验研究[D]. 徐州: 中国矿业大学, 2019: 8-11.YANG H. Study on the heat treat process experiment of 17CrNiMo6 steel used for heavy -duty gear[D]. Xuzhou: China University of Mining and Technology, 2019: 8-11. [16] DOSSETT J L, TOTTEN G E, 美国金属学会热处理手册—钢铁材料的热处理D卷[M]. 北京: 机械工业出版社, 2018: 175-179, 261-262.DOSSETT J L, TOTTEN G E. ASM handbook volume D heat treating of irons and steels[M]. Beijing: China Machine Press, 2018: 175-179, 261-262. [17] 刘阳,胡一杰,江利. 17CrNiMo6钢的热处理工艺及性能研究[J]. 铸造技术,2016,37(1):30-33.LIU Y,HU Y J,JIANG L. Study on heat treatment process and properties of 17CrNiMo6 steel[J]. Foundry Technology,2016,37(1):30-33. [18] 庞兰, 孙秀华, 梁功. 某型发动机高温齿轮钢16Cr3NiWMoVNbE的研制[C]∥第十届航空发动机动力传输学术讨论会会议论文集. 北京: 中国航空学会, 2001: 209-213.PANG L, SUN X H, LIANG G. Preparation of high temperature gear steel 16Cr3NiWMoVNbE used in engine[C]∥ Conference proceedings of the 10th symposium of aero-engine on power transmission. Beijing: China Aviation Society, 2001: 209-213. [19] 杨其苹. 高温齿轮钢16Cr3NiWMoVNbE的综合性能研究和评定[C]∥第十届航空发动机动力传输学术讨论会会议论文集. 北京: 中国航空学会, 2001: 2014-222.YANG Q P. Research and evaluation of high temperature gear steel 16Cr3NiWMoVNbE on comprehensive performance[C]∥Conference proceedings of the 10th symposium of aero-engine on power transmission. Beijing: China Aviation Society, 2001: 2014-222. [20] 张文帅,周贤良,李晖榕,等. 新型16Cr3NiWMoVNbE齿轮钢渗碳工艺与性能研究[J]. 热加工工艺,2010,39(24):216-218. doi: 10.3969/j.issn.1001-3814.2010.24.062ZHANG W S,ZHOU X L,LI H R,et al. Study on carburizing process for new-type 16Cr3NiWMoVNbE gear steel and its properties[J]. Hot Working Technology,2010,39(24):216-218. doi: 10.3969/j.issn.1001-3814.2010.24.062 [21] 朱祖昌,杨弋涛. 第一、二、三代轴承钢及其热处理技术的研究进展(二)[J]. 热处理技术与装备,2019,40(1):67-72.ZHU Z C,YANG Y T. Investigative advancement in first, second and third generational bearing steel and heat treatment technics (Ⅱ)[J]. Heat Treatment Technology and Equipment,2019,40(1):67-72. [22] 张玉庭. . 机械零件选材及热处理设计手册[M]. 北京: 机械工业出版社, 2014: 125-128.ZHANF Y T. Manual of mechanical parts materials selection & heat treatment designing[M]. Beijing: China Machine Press, 2014: 125-128. [23] 张学诚. 齿轮钢接触疲劳寿命的研究[J]. 山东冶金,2020,42(5):31-32.ZHANF X C. Study of contact fatigue life on gear steel[J]. Shandong Metallurgy,2020,42(5):31-32. [24] 陈荣莲,余忠荪. 金属齿轮抗胶合承载能力的试验[J]. 上海金属,1992,14(2):35-37.CHEN R L,YU Z S. Test for carrying capacity against glue of metal gears[J]. Shandong Metallurgy,1992,14(2):35-37. [25] 赵振业. 航空高性能齿轮钢的研究与发展[J]. 航空材料学报,2000,20(3):148-157. doi: 10.3969/j.issn.1005-5053.2000.03.029ZHAO Z Y. Research and development of aero-high performance gear steel[J]. Journal of Aeronautical Materials,2000,20(3):148-157. doi: 10.3969/j.issn.1005-5053.2000.03.029 [26] 刘宝锋. AMS 6308钢强韧化机制的研究[D]. 西安: 西安建筑科技大学, 2013: 1-3.LIU B F. The research on strengthening and toughening mechanisms of AMS 6308 steel[D]. Xi’an: Xi’an University of Architecture and Technology, 2013: 1-3. [27] 赵吉庆,杨钢,包汉生,等. 10CrNi2Mo3Cu2V耐热钢的高温析出与脆化机制[J]. 钢铁研究学报,2021(1):56-63. doi: 10.13228/j.boyuan.issn1001-0963.20200035ZHAO J Q,YANG G,BAO H S,et al. High temperature precipitation and brittleness mechanism of 10CrNi2Mo-3Cu2V heat-resistant steel[J]. Journal of Iron and Steel Research,2021(1):56-63. doi: 10.13228/j.boyuan.issn1001-0963.20200035 [28] 刘宝峰,杨钢,华建社,等. 淬火温度对AMS 6308钢组织和性能的影响[J]. 特钢技术,2012(3):12-17. doi: 10.3969/j.issn.1674-0971.2012.03.006LIU B F,YANG G,HUA J S,et al. Effect of quenching temperature on structure and mechanical properties of AMS 6308 steel[J]. Special Steel Technology,2012(3):12-17. doi: 10.3969/j.issn.1674-0971.2012.03.006 [29] 彭涛,曹建春,赵吉庆,等. AMS 6308钢中Cu的析出强化[J]. 材料热处理学报,2016(10):126-130.PENG T,CAO J C,ZHAO J Q,et al. Cu precipitation strengthening in AMS 6308 steel[J]. Transactions of Materials and Heat Treatment,2016(10):126-130. [30] 丁开勇. M50NiL钢热变形行为研究[D]. 焦作: 河南理工大学, 2016.DING K Y. Study on hot deformation behavior of M50NiL steel[D]. Jiaozuo: Henan Polytechnic University, 2016. [31] 徐玉兰,赵航. 渗碳型高温轴承钢的研究[J]. 钢铁研究学报,1995(3):85-89. doi: 10.13228/j.boyuan.issn1001-0963.1995.03.017XU Y L,ZHAO H. Carburized high temperature bearing steels[J]. Journal of Iron and Steel Research,1995(3):85-89. doi: 10.13228/j.boyuan.issn1001-0963.1995.03.017 [32] 李长亮. M50NiL钢真空渗碳工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 39.LI C L. Study on vacuum carburizing processes of M50NiL steel[D]. Harbin: Harbin Institute of Technology, 2018: 39. [33] 田勇,宋超伟,葛泉江,等. 航空用高温轴承钢CSS-42L热处理技术及其展望[J]. 轧钢,2019(6):1-5.TIAN Y,SONG C W,GE Q J,et al. Status of research and development of heat treatment techniques for heat resistant bearing steel CSS-42L applied for aviation[J]. Steel Rolling,2019(6):1-5. [34] MALONEY J L, TOMASELLO C M. Case carburized stainless steel alloy for high temperature applications: US5424028[P]. 1993-12-23. [35] MUEHMANN C J, OLSON G B, WISE J P, et al. Advanced case carburizing secondary hardening steels: US6176946B1[P]. 1999-4-1. [36] 尹龙承. 14Cr14Co13Mo4钢Ni缓冲层法渗碳及热处理工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 24.YIN L C. Ni buffer layer method for carburizing and heat treatment of 14Cr14Co13Mo4 steel[D]. Harbin: Harbin Institute of Technology, 2020: 24. [37] 刘天祥. BG800轴承钢耐磨性能与疲劳行为的研究[D]. 昆明: 昆明理工大学, 2021: 13.LIU T X. Study of wear resistance and fatigue behavior for BG800 bearing steel[D]. Kunming: Kunming University of Science and Technology, 2021: 13. [38] 盛伟,陈天运,李志,等. 基于JMatPro软件的超高强度钢强度设计[J]. 金属热处理,2017(6):157-160. doi: 10.13251/j.issn.0254-6051.2017.06.035SHENG W,CHEN T Y,LI Z,et al. Strength design of ultra-high strength steel based on JMatPro software[J]. Heat Treatment of Metals,2017(6):157-160. doi: 10.13251/j.issn.0254-6051.2017.06.035 [39] JAMES A W, JASON S. Secondary-hardening gear steel: US8801872[P]. 2009-11-4. [40] JASSON S, JEFF G, DAVE S. New high performance gear steels for rotorcraft transmission applications (Ferrium C61 TM and Ferrium C64TM)[C]∥Proceedings of the ASME 2013 international design engineering technical conferences and computers and information in engineering conference. Portland: [s.n.], 2013. [41] 戴彦璋,韩顺,厉勇,等. 回火温度对新一代传动齿轮钢C61组织及性能的影响[J]. 金属热处理,2022(1):49-56. doi: 10.13251/j.issn.0254-6051.2022.01.009DAI Y Z,HAN S,LI Y,et al. Effect of tempering temperature on microstructure and properties of a new generation transmission gear steel C61[J]. Heat Treatment of Metals,2022(1):49-56. doi: 10.13251/j.issn.0254-6051.2022.01.009 [42] 梁晓东,王晨充,李亮,等. 淬火温度对C61齿轮钢显微组织和力学性能的影响[J]. 材料热处理学报,2020,41(11):79-86.LIANG X D,WANG C C,LI L,et al. Effect of quenching temperature on microstructure and mechanical properties of C61 gear steel[J]. Transactions of Materials and Heat Treatment,2020,41(11):79-86. [43] 梁晓东,鞠哲,刘骥,等. 淬火温度对渗碳齿轮钢C64显微组织和力学性能的影响[J]. 金属热处理,2021(4):88-94.LIANG X D,JU Z,LIU J,et al. Effect of quenching temperature on microstructure and mechanical properties of gear steel C64[J]. Heat Treatment of Metals,2021(4):88-94. [44] 戴建科,韩顺,厉勇,等. 航空齿轮钢C69高温渗碳后的组织性能[J]. 金属热处理,2022(4):219-225.DAI J K,HAN S,LI Y,et al. Microstructure and properties of C69 gear steel for aviation after high temperature carburizing[J]. Heat Treatment of Metals,2022(4):219-225. [45] 胡正飞,吴杏芳,梨秀球,等. 高CoNi合金钢中二次碳化物的析出与转化[J]. 金属学报,2001,37(4):381-385. doi: 10.3321/j.issn:0412-1961.2001.04.010HU Z F,WU X F,LI X Q,et al. Precipitation and transformation of the second carbides in isothermal tempered high CoNi alloy steel[J]. Acta Metallurgica Sinica,2001,37(4):381-385. doi: 10.3321/j.issn:0412-1961.2001.04.010 [46] 何潇,吕新杨,吴志伟,等. 冷处理对16Cr14Co12Mo5Ni2轴承钢中M6C型碳化物的影响[J]. 材料热处理学报,2019(5):96-102.HE X,LV X Y,WU Z W,et al. Effect of cryogenic treatment of M6C carbide in 16Cr14Co12Mo5Ni2 bearing steel[J]. Transactions of Materials and Heat Treatment,2019(5):96-102. [47] 赵振业. 超高强度钢中二次硬化现象研究[J]. 航空材料学报,2002,22(4):46-54. doi: 10.3969/j.issn.1005-5053.2002.04.010ZHAO Z Y. Studying status on the secondary hardening phenomenon in ultra-high strength steels[J]. Journal of Aeronautical Materials,2002,22(4):46-54. doi: 10.3969/j.issn.1005-5053.2002.04.010 [48] 张晓蕾. 二次硬化型超高强度钢Ferrium S53组织和力学性能研究[D]. 昆明: 昆明理工大学, 2010: 18-28.ZHANG X L. Research on microstructure and mechanical properties of the secondary hardening ultra-high strength steel ferrium S53l[D]. Kunming: Kunming University of Science and Technology, 2010: 18-28. [49] 赵连城. 金属热处理原理[M]. 哈尔滨: 哈尔滨工业大学, 1987: 196-203.ZHAO L C. Theory of metal heat treatment[M]. Harbin: Harbin Institute of Technology, 1987: 196-203. [50] 贺自强, 赵振业, 杨平, 等. 表层超硬化型超高强度耐热齿轮轴承钢及制备方法: CN110423955B[P]. 2019-7-29.HE Z Q, ZHAO Z Y, YANG P, et al. Preparation of heat resistant gear & bearing steel behaving surface super-hardening and ultra-high strength: CN110423955B [P]. 2019-7-29. [51] 贺自强, 赵振业, 杨平, 等. 一种超高强度高韧性沉淀硬化型渗碳钢及制备方法: CN114318167A[P]. 2021-12-15.HE Z Q, ZHAO Z Y, YANG P, et al. Preparation of a kind of ultra-high strength and high toughness steel precipitation hardening and carburizing: CN114318167A [P]. 2021-12-15. [52] 俞峰,陈兴品,徐海峰,等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报,2020,56(4):513-522. doi: 10.11900/0412.1961.2019.00361YU F,CHEN X P,XU H F,et al. Current status of metallurgical quality and fatigue performance of rolling bearing steel and development direction of high-end bearing steel[J]. Acta Metallurgica Sinica,2020,56(4):513-522. doi: 10.11900/0412.1961.2019.00361 [53] 张家华,肖飞,王建中,等. 航天轴承新贵: 60NiTi合金[J]. 金属热处理,2021(6):1-7.ZHANG J H,XIAO F,WANG J Z,et al. New material for aerospace bearing: 60NiTi alloy[J]. Heat Treatment of Metals,2021(6):1-7. [54] INGOLE S. 60NiTi Alloy for tribological and biomedical surface engineering applications[J]. Journal of Metals,2013,65(6):792-798. -

计量
- 文章访问数: 60
- HTML全文浏览量: 17
- PDF下载量: 29
- 被引次数: 0