航空渗碳齿轮钢的迭代发展

郑医 何培刚 李宁 孙振淋

郑医, 何培刚, 李宁, 孙振淋. 航空渗碳齿轮钢的迭代发展[J]. 航空材料学报, 2023, 43(1): 60-69. doi: 10.11868/j.issn.1005-5053.2022.000093
引用本文: 郑医, 何培刚, 李宁, 孙振淋. 航空渗碳齿轮钢的迭代发展[J]. 航空材料学报, 2023, 43(1): 60-69. doi: 10.11868/j.issn.1005-5053.2022.000093
ZHENG Yi, HE Peigang, LI Ning, SUN Zhenlin. Material iterative development of aero carburizing gear steels[J]. Journal of Aeronautical Materials, 2023, 43(1): 60-69. doi: 10.11868/j.issn.1005-5053.2022.000093
Citation: ZHENG Yi, HE Peigang, LI Ning, SUN Zhenlin. Material iterative development of aero carburizing gear steels[J]. Journal of Aeronautical Materials, 2023, 43(1): 60-69. doi: 10.11868/j.issn.1005-5053.2022.000093

航空渗碳齿轮钢的迭代发展

doi: 10.11868/j.issn.1005-5053.2022.000093
基金项目: 黑龙江省杰出青年基金项目(JQ2019E006)
详细信息
    通讯作者:

    孙振淋(1977—),男,博士,研究员,主要从事航空材料及其热处理、脉冲真空化学热处理、热处理变形控制理论与工程应用、无机非金属及复合材料等方面的技术研究工作,联系地址:黑龙江省哈尔滨市平房区保国大街51号(150066),E-mail: sungoldenfuture@163.com

  • 中图分类号: TG156.8

Material iterative development of aero carburizing gear steels

  • 摘要: 对航空动力传动系统渗碳齿轮材料的代际发展、组分特征与强化机制进行综述。第一代渗碳齿轮钢为低碳中低合金钢,渗层组织通过Fe3C型碳化物进行表面硬化,因合金化元素含量低,第一代渗碳齿轮钢回火抗力差,普遍服役温区≤200 ℃。在第一代渗碳齿轮钢中,16Cr3NiWMoVNbE材料碳化物形成元素含量相对较高,通过临界饱和渗碳工艺方法,该材料可进阶为第二代渗碳齿轮钢进行宽温域服役。第二代渗碳齿轮钢为低碳中高合金钢,通过进一步提高合金化程度,适当提升抗回火能力较强的Mo元素含量,基体回火时,可析出部分回火抗力较高的M2C强化相,整体服役温区提升至≤350 ℃。第三代渗碳齿轮钢为低碳超高合金钢,借助计算材料学,充分发挥出“二次硬化”强化基体效果,能够在500 ℃以下温区长期服役。现有合金结构钢体系的强化机制,无法避免500 ℃以上高温长期服役的强度快速衰减问题,下一代渗碳齿轮材料,将以抗氧化性能优异的铁基合金为基础进行研制。

     

  • 表  1  常用航空第一代渗碳齿轮钢牌号及合金成分(质量分数/%)[3-8]

    Table  1.   Brand and component of the 1st generation carburized gear steel(mass fraction/%)[3-8]

    BrandCCrNiMoVNbMnWSi
    93100.08-0.131.00-1.453.00-3.500.08-0.150.45-0.650.20-0.35
    12CrNi3A0.10-0.160.60-0.902.75-3.250.30-0.600.17-0.37
    12Cr2Ni4A0.10-0.151.25-1.753.25-3.750.30-0.600.17-0.37
    14CrMnSiNi2MoA0.11-0.171.20-1.601.40-2.000.20-0.400.65-0.950.35-0.65
    18CrNi4A0.15-0.200.80-1.103.75-4.250.30-0.60≤0.35
    18Cr2Ni4WA0.13-0.191.35-1.654.00-4.500.25-0.550.80-1.200.17-0.37
    20CrNi3A0.17-0.250.60-0.902.75-3.250.30-0.600.17-0.37
    20Cr2Ni4A0.17-0.241.25-1.753.25-3.750.30-0.600.20-0.40
    16Cr3NiWMoVNbE0.14-0.192.60-3.001.00-1.500.40-0.600.35-0.550.10-0.201.00-1.400.60-0.90
    17CrNiMo60.17-0.191.60-1.801.50-1.700.28-0.350.65-0.90≤0.30
    下载: 导出CSV

    表  2  常用航空第二代渗碳齿轮钢牌号及合金成分(质量分数/%)[25-26]

    Table  2.   Brand and component of the 2nd generation carburized gear steel (mass fraction/%)[25-26]

    BrandCCrNiMoVCuCoWSiMnAl
    EX 530.101.053.503.302.13
    Pyrowear 530.101.002.003.250.082.000.900.40
    Pyrowear 6750.0713.02.600.801.605.40
    M 50Ni L0.134.003.504.251.2
    CBS 6000.191.451.001.050.600.06
    CBS 1000M0.141.122.944.77
    Vasco x-20.144.761.401.402.07 1.40
    下载: 导出CSV

    表  3  航空第三代渗碳齿轮钢牌号及合金成分(质量分数/%)[16, 34-35]

    Table  3.   Brand and component of the 3rd generation carburized gear steel (mass fraction/%)[16, 34-35]

    BrandCCrNiMoVCoW
    CSS-42L0.1214.002.004.750.6012.50
    Ferrium C610.153.509.501.100.0818.00
    Ferrium C640.113.507.501.750.0216.300.20
    Ferrium C690.105.003.005.000.0228.00
    Ferrium CS620.089.001.500.2015.00
    下载: 导出CSV

    表  4  9310、Pyrowear 53和Ferrium C61常规热处理后的室温力学性能[25, 39-40]

    Table  4.   Room mechanical properties of 9310、Pyrowear 53 and Ferrium C61[25, 39-40]

    Brandσb/MPaσ0.2/MPaA/%Z/%KIC/
    (MPa·m1/2)
    Akv/JTempering/
    Case hardnessMatrix hardness
    93101206106816539415058-62HRC34-42HRC
    Pyrowear5311729651666.5127118-12920059-63HRC36-44HRC
    FerriumC6116551551167014348060-62HRC48-50HRC
    FerriumC641579137218759449562-64HRC48-50HRC
    Note: Akv is V-notch impact energy.
    下载: 导出CSV

    表  5  航空用超高强度钢Ferrium S53、AerMet 310及CH 2000冶金成分对比(质量分数/%)[48,50-51]

    Table  5.   Component comparison of aero-ultra high strength steel Ferrium S53、AerMet 310 and CH 2000(mass fraction/%)[48,50-51]

    BrandCCrNiMoVCoW
    Ferrium S530.2110.05.52.00.314.01.0
    AerMet 3100.252.411.01.415.0
    CH 20000.125.06.04.00.314.01.0
    下载: 导出CSV
  • [1] ZARETSKY E V. Bearing and gear steels for aerospace applications[R]. USA: NASA, 1990: 18.
    [2] 朱祖昌,杨弋涛. 第一代、第二代和第三代轴承钢及其热处理技术的研究进展(一)[J]. 热处理技术与装备,2018,39(6):70-76.

    ZHU Z C,YANG Y T. Investigative advancement in first, second and third generational bearing steel and heat treatment technics (Ⅰ)[J]. Heat Treatment Technology and Equipment,2018,39(6):70-76.
    [3] 汤万昌. 我国航空发动机齿轮材料的现状[J]. 航空材料学报, 2003(增刊1): 283.

    TANG W C. Current status of materials for aero-engine gears in China[J]. Journal of Aeronautical Materials, 2003(suppl 1): 283.
    [4] 夏恭忱, 石玉珍. 中国航空材料手册[M]. 第一版. 北京: 中国标准出版社, 1988: 86-143, 185-198.

    XIA G C, SHI Y Z. China aeronautical materials manual[M]. 1st edition. BeiJing: Standards Press of China, 1988: 86-143, 185-198.
    [5] 李作贤. 新型轧机用渗碳轴承钢SAE9310研制总结[J]. 特钢技术,1996(1):34-38.

    LI Z X. Preparation of carburization bearing steel SAE9310 used in new rolling mill[J]. Special Steel Technology,1996(1):34-38.
    [6] 王延忠,陈燕燕,王增强,等. 18CrNi4A完全渗碳件在高温及高应变率下的塑性行为[J]. 北京理工大学学报,2017(3):239-243.

    WANG Y Z,CHEN Y Y,WANG Z Q,et al. Plasticity of fully carburized material 18CrNi4A under high temperature and strain rate[J]. Transactions of Beijing Institute of Technology,2017(3):239-243.
    [7] 王成祥. 20Cr2Ni4A钢强韧化研究[J]. 大连工学院学报,1988,27(1):37-43.

    WANG C X. Study of 20Cr2Ni4A steel strengthening and toughening[J]. Journal of Dalian Institute of Technology,1988,27(1):37-43.
    [8] 郑福生,付强,何新. 17CrNiMo6高纯净钢锭生产工艺优化[J]. 河北冶金,2021(2):61-63.

    ZHENG F S,FU Q,HE X. Optimization of 17CrNiMo6 high purity steel bloom production process[J]. Hebei Metallurgy,2021(2):61-63.
    [9] 崔凯. 18Cr2Ni4WA钢复合等温淬火工艺研究[J]. 煤矿机械,2009,30(7):93-94. doi: 10.3969/j.issn.1003-0794.2009.07.043

    CUI K. Technical study of 18Cr2Ni4WA steel composite isothermal quenching[J]. Coal Mine Machinery,2009,30(7):93-94. doi: 10.3969/j.issn.1003-0794.2009.07.043
    [10] 乐平,黄海清,郁凉峰. 18Cr2Ni4WA钢渗碳后淬火工艺对组织和性能的影响[J]. 热处理,2008,23(5):28-34. doi: 10.3969/j.issn.1008-1690.2008.05.006

    LE P,HUANG H Q,YU L F. Effect of quenching process on microstructure and property of carburized 18Cr2Ni4WA steel[J]. Heat Treatment,2008,23(5):28-34. doi: 10.3969/j.issn.1008-1690.2008.05.006
    [11] 郑经纮,王玉烽,沈甫法,等. 18Cr2Ni4WA钢氮化层强化机理的研究[J]. 金属学报,1985,21(5):5-12.

    ZHENG J H,WANG Y F,SHEN F F,et al. Strengthening mechanism in nitrided 18Cr2Ni4WA steel[J]. Acta Metallurgica Sinica,1985,21(5):5-12.
    [12] 侯爱琴,赵剑,任建国,等. 18Cr2Ni4WA钢离子氮化宏观应力的研究[J]. 沈阳工业学院学报,1994,13(1):52-56.

    HOU A Q,ZHAO J,REN J G,et al. Study of macro-stress on ion nitriding of 18Cr2Ni4WA[J]. Journal of Shenyang Institute of Technology,1994,13(1):52-56.
    [13] 刘安武,厉勇,王春旭,等. SAE9310钢热变形行为的研究[J]. 钢铁,2009,44(10):82-86. doi: 10.3321/j.issn:0449-749X.2009.10.019

    LIU A W,LI Y,WANG C X,et al. Investigation on hot deformation behavior of SAE9310[J]. Iron and Steel,2009,44(10):82-86. doi: 10.3321/j.issn:0449-749X.2009.10.019
    [14] 吴秋平, 王春旭, 刘宪民, 等. 回火温度对9310钢力学性能及组织的影响[J]. 热加工工艺, 2012, 41(6): 179-180.

    WU Q P, WANG C X, LIU X M, et al, Influence of tempering temperature on mechanical properties and microstructure of 9310 steel[J]. Hot Working Technology, 2012, 41(6): 179-180.
    [15] 杨辉. 重载齿轮材料17CrNiMo6钢热处理工艺试验研究[D]. 徐州: 中国矿业大学, 2019: 8-11.

    YANG H. Study on the heat treat process experiment of 17CrNiMo6 steel used for heavy -duty gear[D]. Xuzhou: China University of Mining and Technology, 2019: 8-11.
    [16] DOSSETT J L, TOTTEN G E, 美国金属学会热处理手册—钢铁材料的热处理D卷[M]. 北京: 机械工业出版社, 2018: 175-179, 261-262.

    DOSSETT J L, TOTTEN G E. ASM handbook volume D heat treating of irons and steels[M]. Beijing: China Machine Press, 2018: 175-179, 261-262.
    [17] 刘阳,胡一杰,江利. 17CrNiMo6钢的热处理工艺及性能研究[J]. 铸造技术,2016,37(1):30-33.

    LIU Y,HU Y J,JIANG L. Study on heat treatment process and properties of 17CrNiMo6 steel[J]. Foundry Technology,2016,37(1):30-33.
    [18] 庞兰, 孙秀华, 梁功. 某型发动机高温齿轮钢16Cr3NiWMoVNbE的研制[C]∥第十届航空发动机动力传输学术讨论会会议论文集. 北京: 中国航空学会, 2001: 209-213.

    PANG L, SUN X H, LIANG G. Preparation of high temperature gear steel 16Cr3NiWMoVNbE used in engine[C]∥ Conference proceedings of the 10th symposium of aero-engine on power transmission. Beijing: China Aviation Society, 2001: 209-213.
    [19] 杨其苹. 高温齿轮钢16Cr3NiWMoVNbE的综合性能研究和评定[C]∥第十届航空发动机动力传输学术讨论会会议论文集. 北京: 中国航空学会, 2001: 2014-222.

    YANG Q P. Research and evaluation of high temperature gear steel 16Cr3NiWMoVNbE on comprehensive performance[C]∥Conference proceedings of the 10th symposium of aero-engine on power transmission. Beijing: China Aviation Society, 2001: 2014-222.
    [20] 张文帅,周贤良,李晖榕,等. 新型16Cr3NiWMoVNbE齿轮钢渗碳工艺与性能研究[J]. 热加工工艺,2010,39(24):216-218. doi: 10.3969/j.issn.1001-3814.2010.24.062

    ZHANG W S,ZHOU X L,LI H R,et al. Study on carburizing process for new-type 16Cr3NiWMoVNbE gear steel and its properties[J]. Hot Working Technology,2010,39(24):216-218. doi: 10.3969/j.issn.1001-3814.2010.24.062
    [21] 朱祖昌,杨弋涛. 第一、二、三代轴承钢及其热处理技术的研究进展(二)[J]. 热处理技术与装备,2019,40(1):67-72.

    ZHU Z C,YANG Y T. Investigative advancement in first, second and third generational bearing steel and heat treatment technics (Ⅱ)[J]. Heat Treatment Technology and Equipment,2019,40(1):67-72.
    [22] 张玉庭. . 机械零件选材及热处理设计手册[M]. 北京: 机械工业出版社, 2014: 125-128.

    ZHANF Y T. Manual of mechanical parts materials selection & heat treatment designing[M]. Beijing: China Machine Press, 2014: 125-128.
    [23] 张学诚. 齿轮钢接触疲劳寿命的研究[J]. 山东冶金,2020,42(5):31-32.

    ZHANF X C. Study of contact fatigue life on gear steel[J]. Shandong Metallurgy,2020,42(5):31-32.
    [24] 陈荣莲,余忠荪. 金属齿轮抗胶合承载能力的试验[J]. 上海金属,1992,14(2):35-37.

    CHEN R L,YU Z S. Test for carrying capacity against glue of metal gears[J]. Shandong Metallurgy,1992,14(2):35-37.
    [25] 赵振业. 航空高性能齿轮钢的研究与发展[J]. 航空材料学报,2000,20(3):148-157. doi: 10.3969/j.issn.1005-5053.2000.03.029

    ZHAO Z Y. Research and development of aero-high performance gear steel[J]. Journal of Aeronautical Materials,2000,20(3):148-157. doi: 10.3969/j.issn.1005-5053.2000.03.029
    [26] 刘宝锋. AMS 6308钢强韧化机制的研究[D]. 西安: 西安建筑科技大学, 2013: 1-3.

    LIU B F. The research on strengthening and toughening mechanisms of AMS 6308 steel[D]. Xi’an: Xi’an University of Architecture and Technology, 2013: 1-3.
    [27] 赵吉庆,杨钢,包汉生,等. 10CrNi2Mo3Cu2V耐热钢的高温析出与脆化机制[J]. 钢铁研究学报,2021(1):56-63. doi: 10.13228/j.boyuan.issn1001-0963.20200035

    ZHAO J Q,YANG G,BAO H S,et al. High temperature precipitation and brittleness mechanism of 10CrNi2Mo-3Cu2V heat-resistant steel[J]. Journal of Iron and Steel Research,2021(1):56-63. doi: 10.13228/j.boyuan.issn1001-0963.20200035
    [28] 刘宝峰,杨钢,华建社,等. 淬火温度对AMS 6308钢组织和性能的影响[J]. 特钢技术,2012(3):12-17. doi: 10.3969/j.issn.1674-0971.2012.03.006

    LIU B F,YANG G,HUA J S,et al. Effect of quenching temperature on structure and mechanical properties of AMS 6308 steel[J]. Special Steel Technology,2012(3):12-17. doi: 10.3969/j.issn.1674-0971.2012.03.006
    [29] 彭涛,曹建春,赵吉庆,等. AMS 6308钢中Cu的析出强化[J]. 材料热处理学报,2016(10):126-130.

    PENG T,CAO J C,ZHAO J Q,et al. Cu precipitation strengthening in AMS 6308 steel[J]. Transactions of Materials and Heat Treatment,2016(10):126-130.
    [30] 丁开勇. M50NiL钢热变形行为研究[D]. 焦作: 河南理工大学, 2016.

    DING K Y. Study on hot deformation behavior of M50NiL steel[D]. Jiaozuo: Henan Polytechnic University, 2016.
    [31] 徐玉兰,赵航. 渗碳型高温轴承钢的研究[J]. 钢铁研究学报,1995(3):85-89. doi: 10.13228/j.boyuan.issn1001-0963.1995.03.017

    XU Y L,ZHAO H. Carburized high temperature bearing steels[J]. Journal of Iron and Steel Research,1995(3):85-89. doi: 10.13228/j.boyuan.issn1001-0963.1995.03.017
    [32] 李长亮. M50NiL钢真空渗碳工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 39.

    LI C L. Study on vacuum carburizing processes of M50NiL steel[D]. Harbin: Harbin Institute of Technology, 2018: 39.
    [33] 田勇,宋超伟,葛泉江,等. 航空用高温轴承钢CSS-42L热处理技术及其展望[J]. 轧钢,2019(6):1-5.

    TIAN Y,SONG C W,GE Q J,et al. Status of research and development of heat treatment techniques for heat resistant bearing steel CSS-42L applied for aviation[J]. Steel Rolling,2019(6):1-5.
    [34] MALONEY J L, TOMASELLO C M. Case carburized stainless steel alloy for high temperature applications: US5424028[P]. 1993-12-23.
    [35] MUEHMANN C J, OLSON G B, WISE J P, et al. Advanced case carburizing secondary hardening steels: US6176946B1[P]. 1999-4-1.
    [36] 尹龙承. 14Cr14Co13Mo4钢Ni缓冲层法渗碳及热处理工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 24.

    YIN L C. Ni buffer layer method for carburizing and heat treatment of 14Cr14Co13Mo4 steel[D]. Harbin: Harbin Institute of Technology, 2020: 24.
    [37] 刘天祥. BG800轴承钢耐磨性能与疲劳行为的研究[D]. 昆明: 昆明理工大学, 2021: 13.

    LIU T X. Study of wear resistance and fatigue behavior for BG800 bearing steel[D]. Kunming: Kunming University of Science and Technology, 2021: 13.
    [38] 盛伟,陈天运,李志,等. 基于JMatPro软件的超高强度钢强度设计[J]. 金属热处理,2017(6):157-160. doi: 10.13251/j.issn.0254-6051.2017.06.035

    SHENG W,CHEN T Y,LI Z,et al. Strength design of ultra-high strength steel based on JMatPro software[J]. Heat Treatment of Metals,2017(6):157-160. doi: 10.13251/j.issn.0254-6051.2017.06.035
    [39] JAMES A W, JASON S. Secondary-hardening gear steel: US8801872[P]. 2009-11-4.
    [40] JASSON S, JEFF G, DAVE S. New high performance gear steels for rotorcraft transmission applications (Ferrium C61 TM and Ferrium C64TM)[C]∥Proceedings of the ASME 2013 international design engineering technical conferences and computers and information in engineering conference. Portland: [s.n.], 2013.
    [41] 戴彦璋,韩顺,厉勇,等. 回火温度对新一代传动齿轮钢C61组织及性能的影响[J]. 金属热处理,2022(1):49-56. doi: 10.13251/j.issn.0254-6051.2022.01.009

    DAI Y Z,HAN S,LI Y,et al. Effect of tempering temperature on microstructure and properties of a new generation transmission gear steel C61[J]. Heat Treatment of Metals,2022(1):49-56. doi: 10.13251/j.issn.0254-6051.2022.01.009
    [42] 梁晓东,王晨充,李亮,等. 淬火温度对C61齿轮钢显微组织和力学性能的影响[J]. 材料热处理学报,2020,41(11):79-86.

    LIANG X D,WANG C C,LI L,et al. Effect of quenching temperature on microstructure and mechanical properties of C61 gear steel[J]. Transactions of Materials and Heat Treatment,2020,41(11):79-86.
    [43] 梁晓东,鞠哲,刘骥,等. 淬火温度对渗碳齿轮钢C64显微组织和力学性能的影响[J]. 金属热处理,2021(4):88-94.

    LIANG X D,JU Z,LIU J,et al. Effect of quenching temperature on microstructure and mechanical properties of gear steel C64[J]. Heat Treatment of Metals,2021(4):88-94.
    [44] 戴建科,韩顺,厉勇,等. 航空齿轮钢C69高温渗碳后的组织性能[J]. 金属热处理,2022(4):219-225.

    DAI J K,HAN S,LI Y,et al. Microstructure and properties of C69 gear steel for aviation after high temperature carburizing[J]. Heat Treatment of Metals,2022(4):219-225.
    [45] 胡正飞,吴杏芳,梨秀球,等. 高CoNi合金钢中二次碳化物的析出与转化[J]. 金属学报,2001,37(4):381-385. doi: 10.3321/j.issn:0412-1961.2001.04.010

    HU Z F,WU X F,LI X Q,et al. Precipitation and transformation of the second carbides in isothermal tempered high CoNi alloy steel[J]. Acta Metallurgica Sinica,2001,37(4):381-385. doi: 10.3321/j.issn:0412-1961.2001.04.010
    [46] 何潇,吕新杨,吴志伟,等. 冷处理对16Cr14Co12Mo5Ni2轴承钢中M6C型碳化物的影响[J]. 材料热处理学报,2019(5):96-102.

    HE X,LV X Y,WU Z W,et al. Effect of cryogenic treatment of M6C carbide in 16Cr14Co12Mo5Ni2 bearing steel[J]. Transactions of Materials and Heat Treatment,2019(5):96-102.
    [47] 赵振业. 超高强度钢中二次硬化现象研究[J]. 航空材料学报,2002,22(4):46-54. doi: 10.3969/j.issn.1005-5053.2002.04.010

    ZHAO Z Y. Studying status on the secondary hardening phenomenon in ultra-high strength steels[J]. Journal of Aeronautical Materials,2002,22(4):46-54. doi: 10.3969/j.issn.1005-5053.2002.04.010
    [48] 张晓蕾. 二次硬化型超高强度钢Ferrium S53组织和力学性能研究[D]. 昆明: 昆明理工大学, 2010: 18-28.

    ZHANG X L. Research on microstructure and mechanical properties of the secondary hardening ultra-high strength steel ferrium S53l[D]. Kunming: Kunming University of Science and Technology, 2010: 18-28.
    [49] 赵连城. 金属热处理原理[M]. 哈尔滨: 哈尔滨工业大学, 1987: 196-203.

    ZHAO L C. Theory of metal heat treatment[M]. Harbin: Harbin Institute of Technology, 1987: 196-203.
    [50] 贺自强, 赵振业, 杨平, 等. 表层超硬化型超高强度耐热齿轮轴承钢及制备方法: CN110423955B[P]. 2019-7-29.

    HE Z Q, ZHAO Z Y, YANG P, et al. Preparation of heat resistant gear & bearing steel behaving surface super-hardening and ultra-high strength: CN110423955B [P]. 2019-7-29.
    [51] 贺自强, 赵振业, 杨平, 等. 一种超高强度高韧性沉淀硬化型渗碳钢及制备方法: CN114318167A[P]. 2021-12-15.

    HE Z Q, ZHAO Z Y, YANG P, et al. Preparation of a kind of ultra-high strength and high toughness steel precipitation hardening and carburizing: CN114318167A [P]. 2021-12-15.
    [52] 俞峰,陈兴品,徐海峰,等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报,2020,56(4):513-522. doi: 10.11900/0412.1961.2019.00361

    YU F,CHEN X P,XU H F,et al. Current status of metallurgical quality and fatigue performance of rolling bearing steel and development direction of high-end bearing steel[J]. Acta Metallurgica Sinica,2020,56(4):513-522. doi: 10.11900/0412.1961.2019.00361
    [53] 张家华,肖飞,王建中,等. 航天轴承新贵: 60NiTi合金[J]. 金属热处理,2021(6):1-7.

    ZHANG J H,XIAO F,WANG J Z,et al. New material for aerospace bearing: 60NiTi alloy[J]. Heat Treatment of Metals,2021(6):1-7.
    [54] INGOLE S. 60NiTi Alloy for tribological and biomedical surface engineering applications[J]. Journal of Metals,2013,65(6):792-798.
  • 加载中
表(5)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  17
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-07-24
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回