SiCp/2024Al复合材料板材的显微组织、力学性能及加工硬化行为

薛鹏鹏 曹富翔 邓坤坤 聂凯波 刘力

薛鹏鹏, 曹富翔, 邓坤坤, 聂凯波, 刘力. SiCp/2024Al复合材料板材的显微组织、力学性能及加工硬化行为[J]. 航空材料学报, 2023, 43(5): 20-28. doi: 10.11868/j.issn.1005-5053.2022.000114
引用本文: 薛鹏鹏, 曹富翔, 邓坤坤, 聂凯波, 刘力. SiCp/2024Al复合材料板材的显微组织、力学性能及加工硬化行为[J]. 航空材料学报, 2023, 43(5): 20-28. doi: 10.11868/j.issn.1005-5053.2022.000114
XUE Pengpeng, CAO Fuxiang, DENG Kunkun, NIE Kaibo, LIU Li. Microstructure, mechanical properties and work hardening behavior of SiCp/2024Al composite sheet[J]. Journal of Aeronautical Materials, 2023, 43(5): 20-28. doi: 10.11868/j.issn.1005-5053.2022.000114
Citation: XUE Pengpeng, CAO Fuxiang, DENG Kunkun, NIE Kaibo, LIU Li. Microstructure, mechanical properties and work hardening behavior of SiCp/2024Al composite sheet[J]. Journal of Aeronautical Materials, 2023, 43(5): 20-28. doi: 10.11868/j.issn.1005-5053.2022.000114

SiCp/2024Al复合材料板材的显微组织、力学性能及加工硬化行为

doi: 10.11868/j.issn.1005-5053.2022.000114
基金项目: 国家重点研发计划青年科学家项目(2021YFB3703300);国家自然基金项目(52271109);吕梁市重点研发项目(Rc2020-108)
详细信息
    通讯作者:

    邓坤坤(1983—),男,博士,教授,研究方向为镁、铝合金及其复合材料,联系地址:山西省太原市万柏林区迎泽西大街79号(030024),E-mail: dengkunkun@tyut.edu.cn

  • 中图分类号: TB331

Microstructure, mechanical properties and work hardening behavior of SiCp/2024Al composite sheet

  • 摘要: 采用超声波辅助半固态搅拌铸造工艺制备SiCp/2024Al复合材料,对其进行两步热变形(挤压和轧制),得到厚度为1 mm的SiCp/2024Al复合材料板材,研究SiCp含量对显微组织和力学性能的影响。结果表明:轧制态2024铝合金由带状晶粒和大块CuAl2相组成;因SiCp对铝基体动态再结晶形核的促进作用,致使2024铝基体晶粒尺寸显著细化;随着SiCp体积分数的增加,其宏观分布更加均匀;两步变形导致SiCp与CuAl2相的破碎,破碎程度随SiCp体积分数增大而增大,当SiCp体积分数为15%时,SiCp尺寸降至约4.9 μm;随SiCp体积分数的增加,屈服强度逐渐增大,当SiCp体积分数为10%时,SiCp/2024Al复合材料的综合力学性能最为优异,其屈服强度、极限抗拉强度和断后伸长率分别达到305、490 MPa和8%;随着SiCp体积分数的增加,SiCp/2024Al复合材料的热膨胀系数降低,弹性模量提高,当SiCp体积分数为15% 时,弹性模量可达96 GPa,相较于2024铝合金,提高了37.1%。

     

  • 图  1  碳化硅颗粒(SiCp)的SEM图像

    Figure  1.  SEM image of SiCp particles

    图  2  SiCp/2024Al复合材料板材制备示意图

    Figure  2.  Schematic diagram of preparation of SiCp/2024Al composite sheet

    图  3  室温拉伸试样示意图

    Figure  3.  Schematic diagram of tensile specimen at ambient temperature

    图  4  不同SiCp体积分数SiCp/2024Al复合材料的光学显微组织和平均晶粒尺寸 (a)0%;(b)5%;(c)10%;(d)15%

    Figure  4.  Optical microstructures and average grain sizes in SiCp/2024Al composite sheet with different volume fractions of SiCp (a)0%;(b)5%;(c)10%;(d)15%

    图  5  不同SiCp体积分数 SiCp/2024Al 复合材料的 SEM 图像 (a)0%;(b)5%;(c)10%;(d)15%(1)低倍;(2)中倍;(3)高倍

    Figure  5.  SEM images of SiCp/2024Al composite with different volume fractions of SiCp (a)0%;(b)5%;(c)10%;(d)15%;(1)low magnification;(2)medium magnification;(3)high magnification

    图  6  不同SiCp体积分数 SiCp/2024Al 复合材料的BSE图像 (a)0%;(b)5%;(c)10%;(d)15%;(1)低倍;(2)高倍

    Figure  6.  BSE images of solid solution SiCp/2024Al composite with different volume fractions of SiCp (a)0%;(b)5%;(c)10%;(d)15%;(1)low magnification;(2)high magnification

    图  7  SiCp/2024Al 复合材料的EDS分析结果

    Figure  7.  Corresponding EDS results of SiCp/2024Al composite

    图  8  不同SiCp体积分数SiCp/2024Al 复合材料的XRD图谱

    Figure  8.  X-ray diffraction patterns of SiCp/2024Al composite with different volume fractions of SiCp

    图  9  不同SiCp体积分数SiCp/2024Al 复合材料的力学性能 (a)工程应力-应变曲线;(b)YS、UTS和伸长率;(c)弹性模量

    Figure  9.  Mechanical properties of SiCp/2024Al composite with different volume fractions of SiCp (a)engineering stress-strain curves;(b)YS, UTS and elongation;(c)elastic modulus

    图  10  不同SiCp体积分数SiCp/2024Al 复合材料在 100~500 ℃测定的热膨胀系数曲线

    Figure  10.  Thermal expansion coefficient curves of solid solution SiCp/2024Al composite with different volume fractions of SiCp measured at 100-500 ℃

    图  11  不同SiCp体积分数 SiCp/2024Al 复合材料的加工硬化率

    Figure  11.  Work hardening rates of SiCp/2024Al composite with different volume fractions of SiCp

    图  12  不同SiCp体积分数 SiCp/2024Al 复合材料断裂表面的 SEM 组织 (a)0 %;(b)5 %;(c)10 %;(d)15 %(1)低倍;(2)高倍

    Figure  12.  SEM structures of fracture surface of SiCp/2024Al composite with different volume fractions of SiCp (a)0 %;(b)5 %;(c)10 %;(d)15 %;(1)low magnification;(2)high magnification

    表  1  2024铝合金的化学成分(质量分数/%)

    Table  1.   Chemical composition of 2024 aluminum alloy(mass fraction/%)

    CuMgMnSiFeZnTiAl
    4.21.450.710.080.220.060.04Bal
    下载: 导出CSV
  • [1] AMIRKHANLOU S,JI S X. Casting lightweight stiff aluminum alloys:a review[J]. Solid State Mater Sci,2020,45(3):171-186.
    [2] 伍昊,朱和国. 铝基复合材料制备工艺的研究进展[J]. 热加工工艺,2020,49(6):22-27.

    WU H,ZHU H G. Research progress on preparation process of aluminum matrix composites[J]. Hot Working Technology,2020,49(6):22-27.
    [3] ZHOU C,CHEN D,ZHANG X B,et al. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites[J]. Phys Lett A,2015,379(5):452-457. doi: 10.1016/j.physleta.2014.10.048
    [4] ZHOU C,HUANG W,CHEN Z,et al. In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment[J]. Composotes,2015,70:256-262. doi: 10.1016/j.compositesb.2014.11.018
    [5] 肖伯律,黄治冶,马凯,等. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报,2019,55(1):59-72. doi: 10.11900/0412.1961.2018.00461

    XIAO B L,HUANG Z Y,MA K,et al. Research progress on thermal deformation behavior of discontinuously reinforced aluminum matrix composites[J]. Acta Metallurgica Sinica,2019,55(1):59-72. doi: 10.11900/0412.1961.2018.00461
    [6] 薛忠民,王占东,尹证,等. 中国工业复合材料发展回顾与展望[J]. 复合材料科学与工程,2021(6):119-128.

    XUE Z M,WANG Z D,YIN Z,et al. Review and prospect of development of industrial composites in china[J]. Composites Science and Engineering,2021(6):119-128.
    [7] 潘利文,林维捐,唐景凡,等. 颗粒增强铝基复合材料制备方法及研究现状[J]. 材料导报,2016,30(增刊 1):511-515.

    PAN L W,LIN W J,TANG J F,et al. Preparation method and research status of particle-reinforced aluminum matrix composites[J]. Materials Reports,2016,30(Suppl 1):511-515.
    [8] 周立玉,李秀兰,钟强,等. 陶瓷颗粒增强铝基复合材料制备工艺研究进展[J]. 热加工工艺,2020,49(18):21-25.

    ZHOU L Y,LI X L,ZHONG Q,et al. Research progress on preparation process of ceramic particle reinforced aluminum matrix composites[J]. Hot Working Technology,2020,49(18):21-25.
    [9] PAKDEL A,WITECKA A,RYDZEK G,et al. A comprehensive analysis of extrusion behavior, microstructural evolution, and mechanical properties of 6063 Al-B4C composites produced by semisolid stir casting[J]. Materials Science and Engineering:A,2018,721:28-37. doi: 10.1016/j.msea.2018.02.080
    [10] BEHNAMFARD S,MOUSAVIAN R T,KHOSROSHAHI R A,et al. A comparison between hot-rolling process and twin-screw rheo-extrusion process for fabrication of aluminum matrix nanocomposite[J]. Materials Science and Engineering:A,2019,760:152-157. doi: 10.1016/j.msea.2019.05.109
    [11] AN Q,CONG X S,SHEN P,et al. Roles of alloying elements in wetting of SiC by Al[J]. Alloys Compd,2019,784:1212-1220. doi: 10.1016/j.jallcom.2019.01.138
    [12] ZHANG L J,YANG D L,QIU F,et al. Effects of reinforcement surface modification on the microstructures and tensile properties of SiCp/Al2014 composites[J]. Materials Science and Engineering:A,2015,624:102-109. doi: 10.1016/j.msea.2014.11.066
    [13] NIE K B, ZHU Z H, DENG K K, et al. Hot deformation behavior and processing maps of SiC nanoparticles and second phase synergistically reinforced magnesium matrix composites[J]. Nanomaterials, 2019, 9(1): 59-71.
    [14] Lloyd. D. J. Aspects of fracture in particulate reinforced metal matrix composites[J]. Acta Metallurgica,1991,39(1):59-71. doi: 10.1016/0956-7151(91)90328-X
    [15] SHI Q X,DENG K K,NIE K B,et al. Significant influence of minor SiCp on microstructure and mechanical properties of pure Mg[J]. Mater Eng Perform,2020,29(2):1356-1365. doi: 10.1007/s11665-020-04627-x
    [16] CAO F X, DENG K K, WANG C J, et al. Synergistic enhancement of the strength-ductility for stir casting SiCp/2024Al composites by two-step deformation[J]. Metals and Materials International, 2021,(6): 5450-5461.
    [17] GUO W,YI Y,HUANG S,et al. Effects of warm rolling deformation on the microstructure and ductility of large 2219 Al-Cu alloy rings[J]. Metals and Materials International,2020,26(1):56-68. doi: 10.1007/s12540-019-00303-5
    [18] 曾凡坤,孟正华,郭巍,等. 碳化硅颗粒增强石墨/铝复合材料的热物理性能[J]. 复合材料学报,2022,39(10):4918-4926.

    ZENG F K,MENG Z H,GUO W,et al. Thermophysical properties of graphite/aluminum composites reinforced with silicon carbide particles[J]. Acta Materials Compositae Sinica,2022,39(10):4918-4926.
    [19] ZARE R, SHARIFI H, SAERI M R, et al. Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite[J]. Alloys Compd, 2019, 801: 520-528.
    [20] 丁冬海,李汝楠,张立,等. 热处理温度对SiO2f/SiO2复合材料性能的影响[J]. 硅酸盐学报,2022,50(7):2005-2014.

    DING D H,LI R N,ZHANG L,et al. Effect of heat treatment temperature on the properties of SiO2f/SiO2 composites[J]. Journal of the Chinese Ceramic Society,2022,50(7):2005-2014.
    [21] ZHANG L,DENG K K. Microstructures and mechanical properties of SiCp/Mg-xAl-2Ca composites collectively influenced by SiCp and Al content[J]. Materials Science and Engineering:A,2018,725:510-521. doi: 10.1016/j.msea.2018.04.034
    [22] GUO X L,WANG L Q,WANG M M,et al. Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites[J]. Acta Mater,2012,60(6/7):2656-2667.
    [23] FAN D G,DENG K K,WANG C J,et al. Hot deformation behavior and dynamic recrystallization mechanism of an Mg-5wt%Zn alloy with trace SiCp addition[J]. Journal of Materials Research and Technology,2021,10:422-437. doi: 10.1016/j.jmrt.2020.11.105
    [24] DENG K K,SHI J Y,WANG C J,et al. Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite[J]. Composites,2012,43(8):1280-1284. doi: 10.1016/j.compositesa.2012.03.007
    [25] ZHANG L,DENG K K,NIE K B,et al. Microstructures and mechanical properties of Mg-Al-Ca alloys affected by Ca/Al ratio[J]. Materials Science and Engineering:A,2015,636:279-288. doi: 10.1016/j.msea.2015.03.100
    [26] FAN Y D,DENG K K,WANG C J,et al. Work hardening and softening behavior of Mg-Zn-Ca alloy influenced by deformable Ti particles[J]. Materials Science and Engineering:A,2022,833:142326.
    [27] KUMAR D R,NARAYANASAMY R,LOGANATHAN C. Effect of Glass and SiC in aluminum matrix on workability and strain hardening behavior of powder metallurgy hybrid composites[J]. Materials & Design,2012,34:120-136.
    [28] 常海,王翠菊,邓坤坤,等. SiCp颗粒含量对SiCp/Mg-5Al-2Ca复合材料组织与性能的影响[J]. 稀有金属材料与工程,2018,47(5):1377-1384. doi: 10.1016/S1875-5372(18)30138-3

    CHANG H,WANG C J,DENG K K,et al. Effects of SiCp content on the microstructure and mechanical properties of SiCp/Mg-5Al-2Ca composites[J]. Rare Metal Materials and Engineering,2018,47(5):1377-1384. doi: 10.1016/S1875-5372(18)30138-3
    [29] NARAYANASAMY R,RAMESH T,PRABHAKAR M. Effect of particle size of SiC in aluminum matrix on workability and strain hardening behavior of P/M composite[J]. Materials Science and Engineering:A,2009,504:13-23. doi: 10.1016/j.msea.2008.11.037
    [30] NARAYANASAMY R,RAMESH T,PANDEY K S. An experimental investigation on strain hardening behavior of aluminum-3.5% alumina powder metallurgy composite preform under various stress states during cold upset forming[J]. Mater Des,2007,28:1211-23. doi: 10.1016/j.matdes.2006.01.010
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  9
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-13
  • 修回日期:  2023-01-11
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。