Microstructure, mechanical properties and work hardening behavior of SiCp/2024Al composite sheet
-
摘要: 采用超声波辅助半固态搅拌铸造工艺制备SiCp/2024Al复合材料,对其进行两步热变形(挤压和轧制),得到厚度为1 mm的SiCp/2024Al复合材料板材,研究SiCp含量对显微组织和力学性能的影响。结果表明:轧制态2024铝合金由带状晶粒和大块CuAl2相组成;因SiCp对铝基体动态再结晶形核的促进作用,致使2024铝基体晶粒尺寸显著细化;随着SiCp体积分数的增加,其宏观分布更加均匀;两步变形导致SiCp与CuAl2相的破碎,破碎程度随SiCp体积分数增大而增大,当SiCp体积分数为15%时,SiCp尺寸降至约4.9 μm;随SiCp体积分数的增加,屈服强度逐渐增大,当SiCp体积分数为10%时,SiCp/2024Al复合材料的综合力学性能最为优异,其屈服强度、极限抗拉强度和断后伸长率分别达到305、490 MPa和8%;随着SiCp体积分数的增加,SiCp/2024Al复合材料的热膨胀系数降低,弹性模量提高,当SiCp体积分数为15% 时,弹性模量可达96 GPa,相较于2024铝合金,提高了37.1%。Abstract: SiCp/2024Al composite material was prepared by ultrasonic assisted semi-solid stirring casting process, and then the two-step hot deformation(extrusion and rolling)was carried out to obtain SiCp/2024Al composite sheet with a thickness of 1 mm, the influence of SiCp content on its microstructure and mechanical properties was investigated. The results show that the rolled 2024 aluminum alloy consists of banded grains and bulk CuAl2 phase. Due to the promotion effect of SiCp on the dynamic recrystallization nucleus of the Al matrix, the grain size of the 2024 aluminum matrix was significantly refined. With the increase of the volume fraction of SiCp, its macroscopic distribution becomes more uniform. The two-step deformation results in the fracture of SiCp and CuAl2 phases, the fracture degree increases with the increase of the volume fraction of SiCp. When the SiCp volume fraction is 15%, the SiCp size is reduced to about 4.9 μm. With the increase of the SiCp volume fraction, the yield strength gradually increases. When SiCp volume fraction is 10%, the comprehensive mechanical properties of SiCp/2024Al composite plate are the best, and its yield strength, ultimate tensile strength and elongation can reach 305, 490 MPa and 8% respectively. With the increase of SiCp volume fraction, the thermal expansion coefficient of SiCp/2024Al composite decreases and the elastic modulus increases, when the SiCp volume fraction is 15%, the elastic modulus can reach 96 GPa, which is 37.1% higher than the 2024 aluminum alloy.
-
Key words:
- metal matrix composites /
- SiCp /
- thermal deformation /
- elastic modulus /
- mechanical properties
-
表 1 2024铝合金的化学成分(质量分数/%)
Table 1. Chemical composition of 2024 aluminum alloy(mass fraction/%)
Cu Mg Mn Si Fe Zn Ti Al 4.2 1.45 0.71 0.08 0.22 0.06 0.04 Bal -
[1] AMIRKHANLOU S,JI S X. Casting lightweight stiff aluminum alloys:a review[J]. Solid State Mater Sci,2020,45(3):171-186. [2] 伍昊,朱和国. 铝基复合材料制备工艺的研究进展[J]. 热加工工艺,2020,49(6):22-27.WU H,ZHU H G. Research progress on preparation process of aluminum matrix composites[J]. Hot Working Technology,2020,49(6):22-27. [3] ZHOU C,CHEN D,ZHANG X B,et al. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites[J]. Phys Lett A,2015,379(5):452-457. doi: 10.1016/j.physleta.2014.10.048 [4] ZHOU C,HUANG W,CHEN Z,et al. In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment[J]. Composotes,2015,70:256-262. doi: 10.1016/j.compositesb.2014.11.018 [5] 肖伯律,黄治冶,马凯,等. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报,2019,55(1):59-72. doi: 10.11900/0412.1961.2018.00461XIAO B L,HUANG Z Y,MA K,et al. Research progress on thermal deformation behavior of discontinuously reinforced aluminum matrix composites[J]. Acta Metallurgica Sinica,2019,55(1):59-72. doi: 10.11900/0412.1961.2018.00461 [6] 薛忠民,王占东,尹证,等. 中国工业复合材料发展回顾与展望[J]. 复合材料科学与工程,2021(6):119-128.XUE Z M,WANG Z D,YIN Z,et al. Review and prospect of development of industrial composites in china[J]. Composites Science and Engineering,2021(6):119-128. [7] 潘利文,林维捐,唐景凡,等. 颗粒增强铝基复合材料制备方法及研究现状[J]. 材料导报,2016,30(增刊 1):511-515.PAN L W,LIN W J,TANG J F,et al. Preparation method and research status of particle-reinforced aluminum matrix composites[J]. Materials Reports,2016,30(Suppl 1):511-515. [8] 周立玉,李秀兰,钟强,等. 陶瓷颗粒增强铝基复合材料制备工艺研究进展[J]. 热加工工艺,2020,49(18):21-25.ZHOU L Y,LI X L,ZHONG Q,et al. Research progress on preparation process of ceramic particle reinforced aluminum matrix composites[J]. Hot Working Technology,2020,49(18):21-25. [9] PAKDEL A,WITECKA A,RYDZEK G,et al. A comprehensive analysis of extrusion behavior, microstructural evolution, and mechanical properties of 6063 Al-B4C composites produced by semisolid stir casting[J]. Materials Science and Engineering:A,2018,721:28-37. doi: 10.1016/j.msea.2018.02.080 [10] BEHNAMFARD S,MOUSAVIAN R T,KHOSROSHAHI R A,et al. A comparison between hot-rolling process and twin-screw rheo-extrusion process for fabrication of aluminum matrix nanocomposite[J]. Materials Science and Engineering:A,2019,760:152-157. doi: 10.1016/j.msea.2019.05.109 [11] AN Q,CONG X S,SHEN P,et al. Roles of alloying elements in wetting of SiC by Al[J]. Alloys Compd,2019,784:1212-1220. doi: 10.1016/j.jallcom.2019.01.138 [12] ZHANG L J,YANG D L,QIU F,et al. Effects of reinforcement surface modification on the microstructures and tensile properties of SiCp/Al2014 composites[J]. Materials Science and Engineering:A,2015,624:102-109. doi: 10.1016/j.msea.2014.11.066 [13] NIE K B, ZHU Z H, DENG K K, et al. Hot deformation behavior and processing maps of SiC nanoparticles and second phase synergistically reinforced magnesium matrix composites[J]. Nanomaterials, 2019, 9(1): 59-71. [14] Lloyd. D. J. Aspects of fracture in particulate reinforced metal matrix composites[J]. Acta Metallurgica,1991,39(1):59-71. doi: 10.1016/0956-7151(91)90328-X [15] SHI Q X,DENG K K,NIE K B,et al. Significant influence of minor SiCp on microstructure and mechanical properties of pure Mg[J]. Mater Eng Perform,2020,29(2):1356-1365. doi: 10.1007/s11665-020-04627-x [16] CAO F X, DENG K K, WANG C J, et al. Synergistic enhancement of the strength-ductility for stir casting SiCp/2024Al composites by two-step deformation[J]. Metals and Materials International, 2021,(6): 5450-5461. [17] GUO W,YI Y,HUANG S,et al. Effects of warm rolling deformation on the microstructure and ductility of large 2219 Al-Cu alloy rings[J]. Metals and Materials International,2020,26(1):56-68. doi: 10.1007/s12540-019-00303-5 [18] 曾凡坤,孟正华,郭巍,等. 碳化硅颗粒增强石墨/铝复合材料的热物理性能[J]. 复合材料学报,2022,39(10):4918-4926.ZENG F K,MENG Z H,GUO W,et al. Thermophysical properties of graphite/aluminum composites reinforced with silicon carbide particles[J]. Acta Materials Compositae Sinica,2022,39(10):4918-4926. [19] ZARE R, SHARIFI H, SAERI M R, et al. Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite[J]. Alloys Compd, 2019, 801: 520-528. [20] 丁冬海,李汝楠,张立,等. 热处理温度对SiO2f/SiO2复合材料性能的影响[J]. 硅酸盐学报,2022,50(7):2005-2014.DING D H,LI R N,ZHANG L,et al. Effect of heat treatment temperature on the properties of SiO2f/SiO2 composites[J]. Journal of the Chinese Ceramic Society,2022,50(7):2005-2014. [21] ZHANG L,DENG K K. Microstructures and mechanical properties of SiCp/Mg-xAl-2Ca composites collectively influenced by SiCp and Al content[J]. Materials Science and Engineering:A,2018,725:510-521. doi: 10.1016/j.msea.2018.04.034 [22] GUO X L,WANG L Q,WANG M M,et al. Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites[J]. Acta Mater,2012,60(6/7):2656-2667. [23] FAN D G,DENG K K,WANG C J,et al. Hot deformation behavior and dynamic recrystallization mechanism of an Mg-5wt%Zn alloy with trace SiCp addition[J]. Journal of Materials Research and Technology,2021,10:422-437. doi: 10.1016/j.jmrt.2020.11.105 [24] DENG K K,SHI J Y,WANG C J,et al. Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite[J]. Composites,2012,43(8):1280-1284. doi: 10.1016/j.compositesa.2012.03.007 [25] ZHANG L,DENG K K,NIE K B,et al. Microstructures and mechanical properties of Mg-Al-Ca alloys affected by Ca/Al ratio[J]. Materials Science and Engineering:A,2015,636:279-288. doi: 10.1016/j.msea.2015.03.100 [26] FAN Y D,DENG K K,WANG C J,et al. Work hardening and softening behavior of Mg-Zn-Ca alloy influenced by deformable Ti particles[J]. Materials Science and Engineering:A,2022,833:142326. [27] KUMAR D R,NARAYANASAMY R,LOGANATHAN C. Effect of Glass and SiC in aluminum matrix on workability and strain hardening behavior of powder metallurgy hybrid composites[J]. Materials & Design,2012,34:120-136. [28] 常海,王翠菊,邓坤坤,等. SiCp颗粒含量对SiCp/Mg-5Al-2Ca复合材料组织与性能的影响[J]. 稀有金属材料与工程,2018,47(5):1377-1384. doi: 10.1016/S1875-5372(18)30138-3CHANG H,WANG C J,DENG K K,et al. Effects of SiCp content on the microstructure and mechanical properties of SiCp/Mg-5Al-2Ca composites[J]. Rare Metal Materials and Engineering,2018,47(5):1377-1384. doi: 10.1016/S1875-5372(18)30138-3 [29] NARAYANASAMY R,RAMESH T,PRABHAKAR M. Effect of particle size of SiC in aluminum matrix on workability and strain hardening behavior of P/M composite[J]. Materials Science and Engineering:A,2009,504:13-23. doi: 10.1016/j.msea.2008.11.037 [30] NARAYANASAMY R,RAMESH T,PANDEY K S. An experimental investigation on strain hardening behavior of aluminum-3.5% alumina powder metallurgy composite preform under various stress states during cold upset forming[J]. Mater Des,2007,28:1211-23. doi: 10.1016/j.matdes.2006.01.010 -