Mg-Sn共晶合金的凝固组织演化及晶体生长机理

唐玲 刘文义 王永善

唐玲, 刘文义, 王永善. Mg-Sn共晶合金的凝固组织演化及晶体生长机理[J]. 航空材料学报, 2023, 43(5): 50-57. doi: 10.11868/j.issn.1005-5053.2022.000149
引用本文: 唐玲, 刘文义, 王永善. Mg-Sn共晶合金的凝固组织演化及晶体生长机理[J]. 航空材料学报, 2023, 43(5): 50-57. doi: 10.11868/j.issn.1005-5053.2022.000149
TANG Ling, LIU Wenyi, WANG Yongshan. Solidification structure evolution and crystal growth mechanism of Mg-Sn eutectic alloy[J]. Journal of Aeronautical Materials, 2023, 43(5): 50-57. doi: 10.11868/j.issn.1005-5053.2022.000149
Citation: TANG Ling, LIU Wenyi, WANG Yongshan. Solidification structure evolution and crystal growth mechanism of Mg-Sn eutectic alloy[J]. Journal of Aeronautical Materials, 2023, 43(5): 50-57. doi: 10.11868/j.issn.1005-5053.2022.000149

Mg-Sn共晶合金的凝固组织演化及晶体生长机理

doi: 10.11868/j.issn.1005-5053.2022.000149
基金项目: 陕西省科技厅科研基金项目(2020JM-599)
详细信息
    通讯作者:

    唐玲(1979—),女,硕士,教授,主要从事凝固理论与新材料制备等方面的研究,联系地址:陕西省汉中市汉台区陕西理工大学( 723000),E-mail:snuttang@163.com

  • 中图分类号: TG146.22

Solidification structure evolution and crystal growth mechanism of Mg-Sn eutectic alloy

  • 摘要: 采用金相显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS),研究自由凝固下Mg-Sn共晶合金在不同凝固阶段的组织、相的生长形态及相组成等。探讨Mg-Sn共晶合金的晶体生长机制以及冷却速度对合金显微组织的影响。结果表明:Mg-Sn亚共晶合金中的凝固组织为六角蔷薇花状的初生α-Mg相和共晶Mg/Mg2Sn层片组织的混合结构;Mg-Sn过共晶合金中的凝固组织为棱角分明的初生Mg2Sn金属间化合物相和共晶Mg/Mg2Sn层片组织的混合结构;在亚共晶成分范围内,随着Sn含量的增加,初生α-Mg相含量减少,共晶相含量增多;随着冷却速率的提高,合金组织得到了明显的细化;初生α-Mg相为非小平面相,初生Mg2Sn金属间化合物相为小平面相。

     

  • 图  1  实验所需的金属模具示意图 (a)金属阶梯模具示意图;(b)金属圆柱形模具

    Figure  1.  Metal mold map required for experiment (a) schematic diagram of metal step mold;(b) metal cylindrical mold

    图  2  Mg-Sn合金的XRD图

    Figure  2.  XRD patterns of as-cast Mg-Sn alloys

    图  3  Mg-35%Sn合金在不同阶梯处的微观形貌 (a)厚壁处;(b)中壁处;(c)薄壁处;(d)图(c)局部放大图

    Figure  3.  Solidification microstructure of Mg-35% Sn alloy at different steps (a) thick wall;(b) middle wall;(c) thin wall;(d) partial enlarged picture of Fig.(c)

    图  4  Mg-35%Sn合金能谱面扫描分析图 (a)整体照片;(b)镁元素分布图;(c)锡元素分布图

    Figure  4.  Energy spectrum scanning analysis diagram of Mg-35%Sn alloy (a)SEM;(b) Mg element distribution map;(c) Sn element distribution map

    图  5  Mg-40%Sn合金在不同阶梯处的微观形貌 (a)厚壁处;(b)中壁处;(c)薄壁处;(d)图(c)局部放大图

    Figure  5.  Solidification microstructures of Mg-40% Sn alloy at different steps (a) thick wall;(b)middle wall;(c) thin wall;(d) partial enlarged picture of Fig.(c)

    图  6  Mg-50%Sn合金在不同阶梯处的微观形貌 (a)厚壁处;(b)中壁处;(c)薄壁处;(d)图(c)局部放大图

    Figure  6.  Solidification microstructures of Mg-50% Sn alloy at different steps (a)thick wall;(b)middle wall;(c) thin wall;(d) partial enlarged picture of Fig.(c)

    图  7  Mg-50%Sn合金能谱面扫描分析图 (a)整体照片;(b)Mg元素分布图;(c)Sn元素分布图

    Figure  7.  Energy spectrum scanning analysis diagram of Mg-35%Sn alloy (a)SEM;(b)Mg element distribution map;(c) Sn element distribution map

    图  8  Mg-35%Sn合金圆柱形试样横截面金相组织图

    Figure  8.  Cross sectional microstructure of Mg-35%Sn alloy cylindrical specimen

    图  9  Mg-Sn合金两种不同初生相的生长形貌图 (a)初生α-Mg相;(b)初生Mg2Sn金属相化合物相

    Figure  9.  Growth morphologies of two different primary phases in Mg-Sn alloy (a) primary phase of α-Mg;(b) primary phase of Mg2Sn intermetallic compound

    表  1  热物理化学参数[21]

    Table  1.   Thermophysical and chemical parameters[21]

    Substance State $ {C}_{\mathrm{p}}=a+bT+c{T}^{-2}/ (\mathrm{J}\text{•} {\mathrm{k}\mathrm{g}}^{-1}\text{•} {\mathrm{K}}^{-1}) $ Tm/K TE/K p+q
    a b c
    Mg2Sn Solid 460 0.0124 –200000 1056 836 3
    Liquid 270 0 0
    下载: 导出CSV
  • [1] FU J W,YANG Y S. Formation of the solidified microstructure in Mg-Sn alloy[J]. Journal of Crystal Growth,2011,322:84-90. doi: 10.1016/j.jcrysgro.2011.03.026
    [2] CHEN D,REN Y P,GUO Y,et al. Microstructures and tensile properties of as-extruded Mg-Sn binary alloys[J]. Transactions of Nonferrous Metals Society of China,2010,20:1321-1325. doi: 10.1016/S1003-6326(09)60298-3
    [3] LIU H M,CHEN Y G,YONG B T,et al. The microstructure and mechanical properties of permanent-mould cast Mg-5%Sn-(0-2.6)%Di alloys[J]. Materials Science and Engineering: A,2006,437:348-355. doi: 10.1016/j.msea.2006.07.149
    [4] ARUSHI D,NILADRI N,NISHANT K,et al. A systematic investigation of secondary phase dissolution in Mg-Sn alloys[J]. Journal of Magnesium and Alloys,2019,7:725-737. doi: 10.1016/j.jma.2019.11.002
    [5] JUNG I H,KABG D H,PARK W J,et al. Applications of thermodynamic calculations to Mg alloy design:Mg-Sn based alloy development[J]. International Journal of Materials Research,2007,9:807-815.
    [6] WANG R,FANG C F,XU Z Y,et al. Correlation of milling time with phase evolution and thermal stability of Mg-25%Sn alloy[J]. Journal of Alloys and Compounds,2021,891:1-10.
    [7] YE L,ZHUANG Y L,ZHAO D S,et al. Transmission electron microscopy investigations of the microstructures in rapidly solidified Mg-Sn ribbons[J]. Micron,2018,115:1-6. doi: 10.1016/j.micron.2018.08.002
    [8] LIU H M,CHEN Y G,TANG Y B,et al. The microstructure,tensile properties,and creep behavior of as-cast Mg-(1–10)%Sn alloys[J]. Journal of Alloys and Compounds,2007,440:122-126. doi: 10.1016/j.jallcom.2006.09.024
    [9] NIR X,GUAN Y M,ZHAO D S,et al. Transmission electron microscopy analysis of the crystallography of precipitates in Mg-Sn alloys aged at high temperatures[J]. Journal of Applied Crystallography,2014,47:1729-1735. doi: 10.1107/S160057671401958X
    [10] GHOSH P,MEZBAHUL M I,MEDRAJ M,et al. Critical assessment and thermodynamic modeling of Mg-Zn,Mg-Sn,Sn-Zn and Mg-Sn-Zn systems[J]. Calphad:Computer Coupling of Phase Diagrams and Thermochemistry,2012,36:28-43. doi: 10.1016/j.calphad.2011.10.007
    [11] NATHALIE M N,THIERRY D. Modelling of the transition from a planar faceted front to equiaxed growth:Application to photovoltaic polycrystalline silicon[J]. Journal of Crystal Growth,2008,311:20-25. doi: 10.1016/j.jcrysgro.2008.10.011
    [12] CHRISTIAN J W. The theory of transformations in metals and alloys[M]. Pergamon,Oxford,1975:204-405.
    [13] 胡汉起. 金属凝固原理[M]. 北京:机械工业出版社,2010:45-80.

    HU H Q. Fundamentals of solidification[M]. Beijing:China Machine Press,2010:45-80.
    [14] 田露露,崔春娟,问亚岗,等. Ni-12mass%Si过共晶的凝固特性及晶体生长机理[J]. 材料热处理学报. 2017,38(9):11-17.

    TIAN L L,CUI C J,WEN Y G,et al. Solidification characteristics and crystal growth mechanism of Ni-12mass%Si hypereutectic alloy[J]. Transactions of Materials and Heat Treatment. 2017,38(9):11-17.
    [15] LU Y P,LIN X,YANG G C,et al. The formation of quasiregular microstructure in highly undercooled Ni70.2Si29.8eutectic alloy[J]. Journal of Applied Physics,2008,104(013535):10-16.
    [16] TAYLOR M R,FIDLER R S,SMITH R W. The characterization of eutectic structures[J]. Proceedings of the Royal Society,1973,A335:15-37.
    [17] TAYLOR M R,FIDLER R S,SMITH R W. The classification of binary eutectics[J]. Metallurgical Transactions A,1971,2:1793-1798. doi: 10.1007/BF02913407
    [18] FILDER R S,CROKER M N,SMITH R W. The thermodynamics and morphologies of eutectics containing compound phases[J]. Journal of the Crystal Growth,1972,13/14:739-746. doi: 10.1016/0022-0248(72)90552-0
    [19] 刘娜娜,宋仁伯,孙翰英. Mg2Sn电子结构及热力学性质的第一性原理计算[J]. 物理学报,2008,57(11):7145-7150. doi: 10.3321/j.issn:1000-3290.2008.11.070

    LIU N N,SONG R B,SUN H Y,et al. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations[J]. Acta Physica Sinica,2008,57(11):7145-7150. doi: 10.3321/j.issn:1000-3290.2008.11.070
    [20] 周惦武,徐少华,张福全,等. Sn合金化MgZn2相及Mg2Sn相结构稳定性的第一原理研究[J]. 中国有色金属学报,2010,20(5):914-922.

    ZHOU D W,XU S H,ZHANG F Q,et al. First-principle study on structural stability of Sn alloying MgZn2 phase and Mg2Sn phase[J]. The Chinese Journal of Nonferrous Metals,2010,20(5):914-922.
    [21] 赵定国,郭培民,赵沛. 金属间化合物的比热容估算模型[J]. 北京科技大学学报,2010,32(5):565-569. doi: 10.13374/j.issn1001-053x.2010.05.016

    ZHAO D G,GUO P M,ZHAO P. Estimating model of specific heat of intermetallics[J]. Journal of University of Science and Technology Beijing,2010,32(5):565-569. doi: 10.13374/j.issn1001-053x.2010.05.016
    [22] 唐玲. 热溶质流动对Mg-35%Cu过共晶合金凝固组织的影响[J]. 有色金属工程,2015,5(1):6-9.

    TANG L. Effect of thermosolutal convection on Mg-35%Cu hypereutectic alloy solidified microstructure[J]. Nonferrous Metals Engineering,2015,5(1):6-9.
    [23] 孟庆辉. 小平面共晶合金凝固组织控制及改性研究[D]. 大连:大连理工大学,2014.

    MENG Q H. Research on solidification microstructure control and modification of faceted-faceted eutectic alloy[D]. Dalian:Dalian University of technology,2014.
    [24] 曹岩岗. 强磁场下Mn-Sb合金中小平面-非小平面生长转变的研究[D]. 沈阳:东北大学,2016.

    CAO Y G. The study on faceted-nonfaceted growth transition of Mn-Sb alloy under high magnetic field[D]. Shenyang:Northeastern university,2016.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  3
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 录用日期:  2023-08-08
  • 修回日期:  2023-06-18
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。