航空发动机复合材料声衬声学模型构建及吸声性能仿真

杨智勇 侯鹏 蒋文革 杨磊 左小彪 耿东兵 朱中正 李华

杨智勇, 侯鹏, 蒋文革, 杨磊, 左小彪, 耿东兵, 朱中正, 李华. 航空发动机复合材料声衬声学模型构建及吸声性能仿真[J]. 航空材料学报, 2023, 43(5): 84-96. doi: 10.11868/j.issn.1005-5053.2022.000151
引用本文: 杨智勇, 侯鹏, 蒋文革, 杨磊, 左小彪, 耿东兵, 朱中正, 李华. 航空发动机复合材料声衬声学模型构建及吸声性能仿真[J]. 航空材料学报, 2023, 43(5): 84-96. doi: 10.11868/j.issn.1005-5053.2022.000151
YANG Zhiyong, HOU Peng, JIANG Wenge, YANG Lei, ZUO Xiaobiao, GENG Dongbing, ZHU Zhongzheng, LI Hua. Construction of acoustic model and simulation of sound absorption of aero-engine composite acoustic liner[J]. Journal of Aeronautical Materials, 2023, 43(5): 84-96. doi: 10.11868/j.issn.1005-5053.2022.000151
Citation: YANG Zhiyong, HOU Peng, JIANG Wenge, YANG Lei, ZUO Xiaobiao, GENG Dongbing, ZHU Zhongzheng, LI Hua. Construction of acoustic model and simulation of sound absorption of aero-engine composite acoustic liner[J]. Journal of Aeronautical Materials, 2023, 43(5): 84-96. doi: 10.11868/j.issn.1005-5053.2022.000151

航空发动机复合材料声衬声学模型构建及吸声性能仿真

doi: 10.11868/j.issn.1005-5053.2022.000151
基金项目: 上海市优秀学术带头人(21XD1401400)
详细信息
    通讯作者:

    李华(1977—),男,博士,研究员,主要从事结构/功能一体化与多功能复合材料研究,联系地址:上海市东川路800号上海交通大学材料D楼331(200240),E-mail: lih@sjtu.edu.cn

  • 中图分类号: V231

Construction of acoustic model and simulation of sound absorption of aero-engine composite acoustic liner

  • 摘要: 声衬是降低发动机噪声的重要组件。本工作计算不同流场状态下管道模态声源特征,并以此作为Actran软件背景流场计算及声传播计算的输入边界,建立声传播模型,研究单自由度声衬与双自由度声衬消音板孔直径、孔间距、蜂窝高度和消音板厚度4种结构参数对吸声效果的影响规律。仿真结果表明:两种自由度声衬都表现出在一定孔直径范围内穿孔直径越小,吸声性能越好的现象;孔间距、蜂窝高度和消音板厚度对吸声性能的影响随频率变化;在2500 Hz以上双自由度声衬耗散功率较大,吸声效果好。通过在流管实验对比验证,比较不同结构声衬在不同激励源下的传递损失,得到合理可信的仿真方法。

     

  • 图  1  有流计算模型示意图

    Figure  1.  Schematic diagram of calculation model with flow

    图  2  仿真技术路线

    Figure  2.  Simulation technology approach

    图  3  实验台示意图

    Figure  3.  Schematic diagram of test bench

    图  4  流场计算模型 (a)边界条件;(b)速度云图;(c)压力云图

    Figure  4.  Flow field calculation model (a)boundary conditions;(b)velocity nephogram;(c)pressure nephogram

    图  5  声学仿真模型示意图 (a)无流计算模型;(b)边界条件

    Figure  5.  Schematic diagram of acoustic simulation model (a)calculation model without flow;(b)boundary conditions

    图  6  Actran背景流场计算 (a)边界条件;(b)计算结果

    Figure  6.  Calculation of Actran background flow field (a)boundary conditions;(b)calculation results

    图  7  背景流场插值结果示例

    Figure  7.  Examples of background flow field interpolation results

    图  8  不同工况下不同声阻抗模型传递损失对比(a)工况1;(b)工况2;(1)声模态(22,1);(2)声模态(44,1),

    Figure  8.  Comparison of transmission loss of different acoustic impedance models in different working conditions(a)working condition 1;(b)working condition 2;(1)mode(22,1);(2)mode(44,1)

    图  9  单自由度声衬结构参数对声衬耗散功率的影响 (a)消音板直径;(b)孔间距;(c)蜂窝高度;(d)消音板厚度声

    Figure  9.  Influence of structural parameters of SDOF acoustic liner on the dissipated power of acoustic liner (a)muffler diameters;(b)hole spacing;(c)honeycomb heights;(d)muffler thickness

    图  10  双自由度声衬结构参数对声衬耗散功率的影响 (a)消音板直径;(b)孔间距;(c)第Ⅰ层蜂窝高度;(d)第Ⅱ层蜂窝高度;(e)消音板厚度;(f)自由度

    Figure  10.  Influences of structural parameters of DDOF acoustic liner on dissipated power of acoustic liner (a)muffler diameters;(b)hole spacing;(c)level Ⅰ honeycomb heights;(d)level Ⅱ honeycomb heights;(e)muffler thickness;(f)degree of freedom

    图  11  传递损失对比

    Figure  11.  Transmission loss comparison

    表  1  试件状态流场参数

    Table  1.   State flow field parameters of test pieces

    State1BPF/
    Hz
    2BPF/
    Hz
    Density/
    (kg·m−3
    Speed of sound/
    (m·s−1
    Average velocity/
    (m·s−1
    Sound pressure level
    of acoustic liner
    wall/dB
    1BPF sound source surface circumferential mode/ sound power level2BPF sound source
    circumferential mode/
    sound power level
    1237747541.14335.69120.0216722/16544/164
    2284356871.08335.69154.52143.2522/16644/163
    3306061201.05334.08170.94119.7522/17444/154
    下载: 导出CSV

    表  2  流场结果

    Table  2.   Flow field results

    State Average density
    of acoustic liner/
    (kg·m−3
    Sound velocity
    of acoustic liner/
    (m·s−1
    Average velocity of acoustic liner/
    (m·s−1
    1 1.15 335.86 119.40
    2 1.11 333.35 150.00
    3 1.08 331.85 166.41
    下载: 导出CSV

    表  3  风扇出口流场结果

    Table  3.   Fan outlet flow field results

    StateAverage fan outlet speed/(m·s−1Fan outlet density/
    (kg·m−3
    Fan outlet sound
    speed/(m·s−1
    1128.381.14335.20
    2163.311.08332.15
    3181.671.05330.24
    下载: 导出CSV

    表  4  实验状态参数

    Table  4.   Test state parameters

    State1BPF
    /Hz
    Density/
    (kg·m−3
    Speed of sound/(m·s−1Average velocity/(m·s−1Sound pressure level of
    acoustic liner wall/dB
    1BPF sound source surface
    circumferential mode/sound
    power level /dB
    330601.05334.08170.94119.7522/174
    下载: 导出CSV

    表  5  声衬结构参数

    Table  5.   Acoustic liner structure parameters

    TypeMuffler hole spacing/mmMuffler thickness/mmMuffler hole diameter/mmHoneycomb thickness/mmSandwich perforated plate diameter/mmSandwich perforated board spacing/mmSandwich perforated plate thickness/mm
    DDOF3.71.21.525.2(Ⅰ)
    38.3(Ⅱ)
    1.830.5
    SDOF3.71.21.564
    下载: 导出CSV

    表  6  声衬结构参数变化

    Table  6.   Variation of acoustic liner structure parameters

    Hole spacing/
    mm
    Hole diameter/
    mm
    Muffler thickness/
    mm
    Layer Ⅰ honeycomb
    height / mm
    Layer Ⅱ honeycomb
    height / mm
    SDOF acoustic liner
    honeycomb height / mm
    11.50.512.3512.3512.35
    3.71.81.225.225.225.2
    721.838.338.364
    下载: 导出CSV

    表  7  平板试样参数明细

    Table  7.   Details of parameters of flat samples

    Serial numberHole spacing/
    mm
    Muffler
    thickness/
    mm
    Hole diameter/
    mm
    honeycomb height/mmSandwich perforated
    plate diameter/mm
    Sandwich perforated
    board spacing/mm
    Sandwich perforated
    plate thickness/mm
    71.2225.2
    71.2264
    Ⅲ(double layer)3.71.21.525.2(Ⅰ)/
    38.3(Ⅱ)
    1.830.5
    3.71.21.525.2
    Ⅴ(double layer)3.71.21.512.35/12.351.830.5
    下载: 导出CSV

    表  8  传递损失对比

    Table  8.   Transmission loss comparison

    Acoustic liner parameters Simulation Acoustic liner sample 110 dB 120 dB 130 dB 140 dB 150 dB
    2377 Hz 4754 Hz 2377 Hz 4754 Hz 2377 Hz 4754 Hz 2377 Hz 4754 Hz 2377 Hz 4754 Hz 2377 Hz 4754 Hz
    56.1 48.7 N2 22.2 5.3 30.1 4.7 27.3 4.9 30.3 5.7 23.9 6.5
    44.2 45 N3 7.3 4.9 7.1 4.7 7 4.8 7.6 5 8.3 5.4
    43.3 43.7 N4 6.4 8.6 8 6.5 6.8 7.5 6.1 9.3 6.7 11
    63.6 47.6 N5 4.9 11.1 4 10 4.1 12.4 5.3 11.5 7.1 9.8
    63.5 47.4 N6 14 8.1 12.3 8.5 13.8 9.2 13.7 9.6 12.6 9.7
    下载: 导出CSV
  • [1] MORRELL S,TAYLOR R,LYLE D. A review of health effects of aircraft noise[J]. Australian and New Zealand Journal of Public Health,2010,21(2):221-236.
    [2] ENVIA E. Fan noise reduction:an overview[J]. International Journal of Aeroacoustics,2002,1(1):43-64. doi: 10.1260/1475472021502668
    [3] 杨嘉丰,薛东文,李卓瀚,等. 切向流条件下短舱单/双自由度声衬实验[J]. 航空学报,2020,41(11):337-347.

    YANG J G,XUE D W,LI Z H,et al. Single and double degree-of-freedom acoustic liners under grazing flow:experiment[J]. Acta Aeronautica et Astronautica Sinica,2020,41(11):337-347.
    [4] 乔渭阳. 航空发动机气动声学[M]. 北京:北京航空航天大学出版社,2010.
    [5] 张英杰. 声衬技术在大涵道比发动机短舱上的应用[J]. 中国设备工程,2017(22):119-120.

    ZHANG Y J. Application of acoustic lining technology in large bypass ratio engine nacelle[J]. China Plant Engineering,2017(22):119-120.
    [6] 黄太誉,高翔. 复合材料声衬声阻抗性能测试试验研究[J]. 工程与试验,2020,60(2):36-39.

    HUANG T Y,GAO X. Test and research on acoustic impedance performance of composite acoustic lining[J]. Engineering & Test,2020,60(2):36-39.
    [7] 马大猷. 亥姆霍兹共鸣器[J]. 声学技术,2002,21(1):2-3.

    MA D Y. Helmholtz resonator[J]. Acoustic Technology,2002,21(1):2-3.
    [8] 盖晓玲,李贤徽,杨军,等. 吸声材料对亥姆霍兹共振器吸声性能的影响[J]. 电声技术,2012,36(11):1-4.

    GAI X L,LI X H,YANG J,et al. Effect of sound absorbing materials on sound absorption performance of Helmholtz resonators [J]. Electroacoustic Technology,2012,36(11):1-4.
    [9] 周迪. 多腔共振声衬在高阶模态管道声环境中的性能研究[D]. 北京:北京航空航天大学,2016.

    ZHOU D. Research on performance of multi-cavity resonant acoustic lining in high-order modal pipeline acoustic environment[D]. Beijing:Beihang University,2016.
    [10] JING X,WANG X,SUN X. Broad band acoustic liner based on the mechanism of multiple cavity resonance[J]. AIAA Journal,2015,45(10):2429-2437.
    [11] 马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学,1975(1):38-50.

    MA D Y. Theory and design of microperforated plate sound absorbing structure[J]. Science China,1975(1):38-50.
    [12] 陈超,闫照华,李晓东. 风扇后传声降噪声衬设计方法及实验验证[J]. 航空动力学报,2018,33(12):3041-3047.

    CHEN C,YAN Z H,LI X D. Design method and experimental verification of noise reduction lining for fan rear transmission[J]. Journal of Aerospace Power,2018,33(12):3041-3047.
    [13] ZORUMSKI W E. Acoustic theory of axisymmetric multisection ducts: NASA TM-R-419[R]. Washington,D C:NASA,1974.
    [14] YANG B,WANG T Q. Investigation of the influence of liner hard-splices on duct radiation/propagation and mode scattering[J]. Journal of Sound & Vibration,2008,315(4/5):1016-1034.
    [15] SUN X F,WANG X Y,DU L,et al. A new model for the prediction of turbofan noise with the effect of locally and non-locally reacting liners[J]. Journal of Sound & Vibration,2008,316(1/5):50-68.
    [16] RIENSTRA S W,EVERSMAN W. A numerical comparison between the multiple-scale and finite-element solution for sound propagation in lined flow ducts[J]. Journal of Fluid Mechanics,2001,437:367-384. doi: 10.1017/S0022112001004438
    [17] ENVIA E,WILSON A G,HUFF D L. Fan noise:a challenge to CAA[J]. International Journal of Computational Fluid Dynamics,2004,18(6):471-480. doi: 10.1080/10618560410001673489
    [18] 徐健,英基勇,薛东文,等. 复合材料环状声衬降噪特性试验研究[J]. 科学技术与工程,2020,20(31):13047-13052.

    XU J,YING J Y,XUE D W,et al. Noise reduction characteristics test on composite material annular acoustic liner[J]. Science Technology and Engineering,2020,20(31):13047-13052.
    [19] 孙晓峰,周盛. 气动声学[M]. 北京:国防工业出版社,1993:75-90.
    [20] 杭超,王晨,薛东文,等. 发动机进气声衬结构参数对声激励响应的影响研究[J]. 航空科学技术,2021,32(2):44-49.

    HANG C,WANG C,XUE D W,et al. Study on the influence of structural parameters of inlet acoustic lining on acoustic excitation response of engine[J]. Aeronautical Science & Technology,2021,32(2):44-49.
    [21] 季振林. 消声器声学理论与设计[M]. 北京:科学出版社,2015:36-37.
    [22] 纪双英,郝巍,刘杰. 共振吸声结构在航空发动机上的应用进展[J]. 航空工程进展,2019,10(3):302-308.

    JI S Y,HAO W,LIU J. Application progress of resonant sound-absorbing structures in aero-engines[J]. Aeronautical Engineering Progress,2019,10(3):302-308.
    [23] LEE S H,IH J G. Empirical model of the acoustic impedance of a circular orifice in grazing mean flow[J]. Journal of the Acoustical Society of America,2003,114(1):98-113. doi: 10.1121/1.1581280
    [24] GOWEN R A,SMITH J W. The effect of the Prandtl number on temperature profiles for heat transfer in turbulent pipe flow[J]. Chemical Engineering Science,1967,22(12):1701-1711. doi: 10.1016/0009-2509(67)80205-7
    [25] YU J,RUIZ M,KWAN H W. Validation of Goodrich perforate liner impedance model using NASA langley test data[C]// AIAA/CEAS Aeroacoustics Conference. [S. l. ]:[s. n. ],2013.
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  9
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 修回日期:  2022-11-08
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。