Construction of acoustic model and simulation of sound absorption of aero-engine composite acoustic liner
-
摘要: 声衬是降低发动机噪声的重要组件。本工作计算不同流场状态下管道模态声源特征,并以此作为Actran软件背景流场计算及声传播计算的输入边界,建立声传播模型,研究单自由度声衬与双自由度声衬消音板孔直径、孔间距、蜂窝高度和消音板厚度4种结构参数对吸声效果的影响规律。仿真结果表明:两种自由度声衬都表现出在一定孔直径范围内穿孔直径越小,吸声性能越好的现象;孔间距、蜂窝高度和消音板厚度对吸声性能的影响随频率变化;在2500 Hz以上双自由度声衬耗散功率较大,吸声效果好。通过在流管实验对比验证,比较不同结构声衬在不同激励源下的传递损失,得到合理可信的仿真方法。Abstract: Acoustic liner is an important component to reduce engine noise. In this work, the modal sound source characteristics of the pipeline under different flow fields were calculated and used as the input boundary for the background flow field calculation and sound propagation calculation of the Actran software, thereby establishing the sound propagation model. The influences of four structural parameters on the sound absorption effect of the muffler plate hole diameter, hole spacing, honeycomb height, and muffler plate thickness in the single-DOF acoustic liner and the double-DOF acoustic liner were studied respectively. The simulation results show that both degrees of freedom acoustic liners exhibit the phenomenon that the smaller the perforation diameter, the better the sound absorption performance within a certain range of hole diameter. The effects of hole spacing, honeycomb height, and muffler thickness on the sound absorption performance are varied with frequency, the double-DOF acoustic liner above 2500 Hz has large dissipation power and good sound absorption effect. Through the contrast verification in the flow tube test, the transmission loss of the acoustic liner of different structures under different excitation sources is compared, and a reasonable and credible simulation method is obtained.
-
Key words:
- acoustic liner /
- single-DOF /
- double-DOF /
- noise reduction amount
-
图 10 双自由度声衬结构参数对声衬耗散功率的影响 (a)消音板直径;(b)孔间距;(c)第Ⅰ层蜂窝高度;(d)第Ⅱ层蜂窝高度;(e)消音板厚度;(f)自由度
Figure 10. Influences of structural parameters of DDOF acoustic liner on dissipated power of acoustic liner (a)muffler diameters;(b)hole spacing;(c)level Ⅰ honeycomb heights;(d)level Ⅱ honeycomb heights;(e)muffler thickness;(f)degree of freedom
表 1 试件状态流场参数
Table 1. State flow field parameters of test pieces
State 1BPF/
Hz2BPF/
HzDensity/
(kg·m−3)Speed of sound/
(m·s−1)Average velocity/
(m·s−1)Sound pressure level
of acoustic liner
wall/dB1BPF sound source surface circumferential mode/ sound power level 2BPF sound source
circumferential mode/
sound power level1 2377 4754 1.14 335.69 120.02 167 22/165 44/164 2 2843 5687 1.08 335.69 154.52 143.25 22/166 44/163 3 3060 6120 1.05 334.08 170.94 119.75 22/174 44/154 表 2 流场结果
Table 2. Flow field results
State Average density
of acoustic liner/
(kg·m−3)Sound velocity
of acoustic liner/
(m·s−1)Average velocity of acoustic liner/
(m·s−1)1 1.15 335.86 119.40 2 1.11 333.35 150.00 3 1.08 331.85 166.41 表 3 风扇出口流场结果
Table 3. Fan outlet flow field results
State Average fan outlet speed/(m·s−1) Fan outlet density/
(kg·m−3)Fan outlet sound
speed/(m·s−1)1 128.38 1.14 335.20 2 163.31 1.08 332.15 3 181.67 1.05 330.24 表 4 实验状态参数
Table 4. Test state parameters
State 1BPF
/HzDensity/
(kg·m−3)Speed of sound/(m·s−1) Average velocity/(m·s−1) Sound pressure level of
acoustic liner wall/dB1BPF sound source surface
circumferential mode/sound
power level /dB3 3060 1.05 334.08 170.94 119.75 22/174 表 5 声衬结构参数
Table 5. Acoustic liner structure parameters
Type Muffler hole spacing/mm Muffler thickness/mm Muffler hole diameter/mm Honeycomb thickness/mm Sandwich perforated plate diameter/mm Sandwich perforated board spacing/mm Sandwich perforated plate thickness/mm DDOF 3.7 1.2 1.5 25.2(Ⅰ)
38.3(Ⅱ)1.8 3 0.5 SDOF 3.7 1.2 1.5 64 — — — 表 6 声衬结构参数变化
Table 6. Variation of acoustic liner structure parameters
Hole spacing/
mmHole diameter/
mmMuffler thickness/
mmLayer Ⅰ honeycomb
height / mmLayer Ⅱ honeycomb
height / mmSDOF acoustic liner
honeycomb height / mm1 1.5 0.5 12.35 12.35 12.35 3.7 1.8 1.2 25.2 25.2 25.2 7 2 1.8 38.3 38.3 64 表 7 平板试样参数明细
Table 7. Details of parameters of flat samples
Serial number Hole spacing/
mmMuffler
thickness/
mmHole diameter/
mmhoneycomb height/mm Sandwich perforated
plate diameter/mmSandwich perforated
board spacing/mmSandwich perforated
plate thickness/mmⅠ 7 1.2 2 25.2 — — — Ⅱ 7 1.2 2 64 — — — Ⅲ(double layer) 3.7 1.2 1.5 25.2(Ⅰ)/
38.3(Ⅱ)1.8 3 0.5 Ⅳ 3.7 1.2 1.5 25.2 — — — Ⅴ(double layer) 3.7 1.2 1.5 12.35/12.35 1.8 3 0.5 表 8 传递损失对比
Table 8. Transmission loss comparison
Acoustic liner parameters Simulation Acoustic liner sample 110 dB 120 dB 130 dB 140 dB 150 dB 2377 Hz 4754 Hz 2377 Hz 4754 Hz 2377 Hz 4754 Hz 2377 Hz 4754 Hz 2377 Hz 4754 Hz 2377 Hz 4754 Hz Ⅰ 56.1 48.7 N2 22.2 5.3 30.1 4.7 27.3 4.9 30.3 5.7 23.9 6.5 Ⅱ 44.2 45 N3 7.3 4.9 7.1 4.7 7 4.8 7.6 5 8.3 5.4 Ⅲ 43.3 43.7 N4 6.4 8.6 8 6.5 6.8 7.5 6.1 9.3 6.7 11 Ⅳ 63.6 47.6 N5 4.9 11.1 4 10 4.1 12.4 5.3 11.5 7.1 9.8 Ⅴ 63.5 47.4 N6 14 8.1 12.3 8.5 13.8 9.2 13.7 9.6 12.6 9.7 -
[1] MORRELL S,TAYLOR R,LYLE D. A review of health effects of aircraft noise[J]. Australian and New Zealand Journal of Public Health,2010,21(2):221-236. [2] ENVIA E. Fan noise reduction:an overview[J]. International Journal of Aeroacoustics,2002,1(1):43-64. doi: 10.1260/1475472021502668 [3] 杨嘉丰,薛东文,李卓瀚,等. 切向流条件下短舱单/双自由度声衬实验[J]. 航空学报,2020,41(11):337-347.YANG J G,XUE D W,LI Z H,et al. Single and double degree-of-freedom acoustic liners under grazing flow:experiment[J]. Acta Aeronautica et Astronautica Sinica,2020,41(11):337-347. [4] 乔渭阳. 航空发动机气动声学[M]. 北京:北京航空航天大学出版社,2010. [5] 张英杰. 声衬技术在大涵道比发动机短舱上的应用[J]. 中国设备工程,2017(22):119-120.ZHANG Y J. Application of acoustic lining technology in large bypass ratio engine nacelle[J]. China Plant Engineering,2017(22):119-120. [6] 黄太誉,高翔. 复合材料声衬声阻抗性能测试试验研究[J]. 工程与试验,2020,60(2):36-39.HUANG T Y,GAO X. Test and research on acoustic impedance performance of composite acoustic lining[J]. Engineering & Test,2020,60(2):36-39. [7] 马大猷. 亥姆霍兹共鸣器[J]. 声学技术,2002,21(1):2-3.MA D Y. Helmholtz resonator[J]. Acoustic Technology,2002,21(1):2-3. [8] 盖晓玲,李贤徽,杨军,等. 吸声材料对亥姆霍兹共振器吸声性能的影响[J]. 电声技术,2012,36(11):1-4.GAI X L,LI X H,YANG J,et al. Effect of sound absorbing materials on sound absorption performance of Helmholtz resonators [J]. Electroacoustic Technology,2012,36(11):1-4. [9] 周迪. 多腔共振声衬在高阶模态管道声环境中的性能研究[D]. 北京:北京航空航天大学,2016.ZHOU D. Research on performance of multi-cavity resonant acoustic lining in high-order modal pipeline acoustic environment[D]. Beijing:Beihang University,2016. [10] JING X,WANG X,SUN X. Broad band acoustic liner based on the mechanism of multiple cavity resonance[J]. AIAA Journal,2015,45(10):2429-2437. [11] 马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学,1975(1):38-50.MA D Y. Theory and design of microperforated plate sound absorbing structure[J]. Science China,1975(1):38-50. [12] 陈超,闫照华,李晓东. 风扇后传声降噪声衬设计方法及实验验证[J]. 航空动力学报,2018,33(12):3041-3047.CHEN C,YAN Z H,LI X D. Design method and experimental verification of noise reduction lining for fan rear transmission[J]. Journal of Aerospace Power,2018,33(12):3041-3047. [13] ZORUMSKI W E. Acoustic theory of axisymmetric multisection ducts: NASA TM-R-419[R]. Washington,D C:NASA,1974. [14] YANG B,WANG T Q. Investigation of the influence of liner hard-splices on duct radiation/propagation and mode scattering[J]. Journal of Sound & Vibration,2008,315(4/5):1016-1034. [15] SUN X F,WANG X Y,DU L,et al. A new model for the prediction of turbofan noise with the effect of locally and non-locally reacting liners[J]. Journal of Sound & Vibration,2008,316(1/5):50-68. [16] RIENSTRA S W,EVERSMAN W. A numerical comparison between the multiple-scale and finite-element solution for sound propagation in lined flow ducts[J]. Journal of Fluid Mechanics,2001,437:367-384. doi: 10.1017/S0022112001004438 [17] ENVIA E,WILSON A G,HUFF D L. Fan noise:a challenge to CAA[J]. International Journal of Computational Fluid Dynamics,2004,18(6):471-480. doi: 10.1080/10618560410001673489 [18] 徐健,英基勇,薛东文,等. 复合材料环状声衬降噪特性试验研究[J]. 科学技术与工程,2020,20(31):13047-13052.XU J,YING J Y,XUE D W,et al. Noise reduction characteristics test on composite material annular acoustic liner[J]. Science Technology and Engineering,2020,20(31):13047-13052. [19] 孙晓峰,周盛. 气动声学[M]. 北京:国防工业出版社,1993:75-90. [20] 杭超,王晨,薛东文,等. 发动机进气声衬结构参数对声激励响应的影响研究[J]. 航空科学技术,2021,32(2):44-49.HANG C,WANG C,XUE D W,et al. Study on the influence of structural parameters of inlet acoustic lining on acoustic excitation response of engine[J]. Aeronautical Science & Technology,2021,32(2):44-49. [21] 季振林. 消声器声学理论与设计[M]. 北京:科学出版社,2015:36-37. [22] 纪双英,郝巍,刘杰. 共振吸声结构在航空发动机上的应用进展[J]. 航空工程进展,2019,10(3):302-308.JI S Y,HAO W,LIU J. Application progress of resonant sound-absorbing structures in aero-engines[J]. Aeronautical Engineering Progress,2019,10(3):302-308. [23] LEE S H,IH J G. Empirical model of the acoustic impedance of a circular orifice in grazing mean flow[J]. Journal of the Acoustical Society of America,2003,114(1):98-113. doi: 10.1121/1.1581280 [24] GOWEN R A,SMITH J W. The effect of the Prandtl number on temperature profiles for heat transfer in turbulent pipe flow[J]. Chemical Engineering Science,1967,22(12):1701-1711. doi: 10.1016/0009-2509(67)80205-7 [25] YU J,RUIZ M,KWAN H W. Validation of Goodrich perforate liner impedance model using NASA langley test data[C]// AIAA/CEAS Aeroacoustics Conference. [S. l. ]:[s. n. ],2013. -