Ice-ball impact analysis method and verification of three-dimensional braided composites based on surface unit-cell and interior unit-cell modeling
-
摘要: 针对碳/环氧树脂三维四向编织复合材料开展冰球高速冲击下的损伤研究。应用空气炮冲击实验系统,分别用三种不同冲击速度进行冲击实验,对试件的主要损伤位置进行工业CT扫描,观察其内部损伤形式。分别考虑面胞区域和内胞区域的不同,应用宏观本构模型和冰球的应变率相关材料模型建立冰球冲击三维编织复合材料的有限元仿真模型,研究复合材料厚度和冰球冲击角度对材料损伤的影响,并与实验进行对比验证。结果表明:面胞区域的基体损伤程度相较于内胞区域更严重;迎弹面的损伤面积一般要大于背弹面;斜撞击的冲击角度对损伤面积和损伤位置有所影响,随着冲击角度降低,复合材料的损伤面积也会减小;提升复合材料板的厚度可以提高吸收能量的能力并降低材料损伤面积。Abstract: The high-speed ice-ball impact damage research of epoxy resin/carbon fiber 3D four-way braided composites was carried out. Using the air gun impact test system, ice balls with three different impact velocities were used to conduct impact tests. After the test, industrial CT scans were performed on the main damage positions of the test pieces, and the internal damage forms were observed. The composite macro constitutive model based on surface unit-cell and interior unit-cell and a strain rate related material model of the ice were used to establish the finite element model. The simulation model was compared with the test. The results show that the damage of the matrix in the surface unit-cell area is more serious than that in the interior unit-cell area, the damage area of the front surface is generally larger than that of the back surface, the oblique impact angle has an influence on the damage area and damage location. As the impact angle decreases, the damage area of the composite material also decreases. Increasing the thickness of plate can improve the ability to absorb energy and reduce the damage area of the material.
-
Key words:
- three-dimensional braided composites /
- ice-ball impact /
- unit cell /
- numerical analysis
-
Young’s modulus/ GPa Poisson’s ratio Density/
( kg·m-3)Tensile failure pressure/
MPaQuasi-static yield strength/
MPa9.38 0.33 850 0.517 5.2 表 2 冰球屈服强度的应变率强化参数
Table 2. Strain rate dependent yield strength of ice-ball
Strain rate/s−1 Yield strength ratio 0 1 0.1 1.01 0.5 1.5 1 1.71 5 2.20 10 2.42 50 2.91 100 3.13 500 3.62 1×103 3.84 5×103 4.33 1×104 4.55 5×104 5.04 1×105 5.25 5×105 5.75 1×106 5.96 Density /
( kg·m-3)Elastic modulus/GPa Shear modulus/GPa Poisson’s
ratioCompressive strength/MPa Tensile strength/MPa Fracture energy/
(N/·mm-3)1190 3.5 1.29 0.35 126 93 0.09 Density /
( kg·m-3)Longitudinal tensile elastic modulus/GPa Transverse elastic modulus/GPa Longitudinal shear modulus/GPa Transverse shear modulus/GPa Longitudinal Poisson’ ratio Transverse Poisson’s ratio 1760 230 15 24 5.3571 0.28 0.4 表 5 冲击实验记录
Table 5. Experiment record sheet
Experiment Mass of ice ball/g Impact velocity/(m·s-1) Impact energy/J 100-1 55.0 101 280.53 100-2 55.5 106 313.48 100-3 55.8 109 329.70 150-1 55.6 151 633.87 150-2 55.5 151 632.73 150-3 55.5 151 632.73 200-1 55.9 191 1019.64 200-2 54.6 — — -
[1] 张迪,郑锡涛,孙颖,等. 三维编织与层合复合材料力学性能对比试验[J]. 航空材料学报,2015,35(3):89-96. doi: 10.11868/j.issn.1005-5053.2015.3.015ZHANG D,ZHENG X T,SUN Y,et al. Comparative investigation of mechanical properties between 3D braided and laminated composites[J]. Journal of Aeronautical Materials,2015,35(3):89-96. doi: 10.11868/j.issn.1005-5053.2015.3.015 [2] 范玉青,张丽华. 超大型复合材料机体部件应用技术的新进展——飞机制造技术的新跨越[J]. 航空学报,2009,30(3):534-543.FAN Y Q,ZHANG L H,New development of extra large composite aircraft components application technology—advance of aircraft manufacture technology[J]. Acta Aeronautica et Astronautica Sinica,2009,30(3):534-543. [3] JENQ S T,KUO J T,SHEU L T. Ballistic impact response of 3-D four-step braided glass/epoxy composites[J]. Key Engineering Materials,1997,141/143:349-366. doi: 10.4028/www.scientific.net/KEM.141-143.349 [4] 徐静怡,顾伯洪. 编织复合材料弹道冲击破坏形态及模式[J]. 弹道学报,2002(2):39-43. doi: 10.3969/j.issn.1004-499X.2002.02.008XU J Y,GU B H. Damage pattern and failure mode of 3-D braided composites under ballistic impact[J]. Journal of Ballistics,2002(2):39-43. doi: 10.3969/j.issn.1004-499X.2002.02.008 [5] LI D,LU Z,JIANG N,et al. High strain rate behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites under transverse compression[J]. Composites Part B,2011,42(2):309-317. doi: 10.1016/j.compositesb.2010.11.011 [6] SUN B,ZHANG Y,GU B. Low-velocity impact response and finite element analysis of four-step 3-D braided composites[J]. Applied Composite Materials,2013,20(4):397-413. doi: 10.1007/s10443-012-9279-2 [7] 谭焕成,许善迎,黄雄,等. 三维四向编织复合材料宏观有限元模型冲击损伤仿真及试验验证[J]. 复合材料学报,2018,35(5):1139-1148. doi: 10.13801/j.cnki.fhclxb.20170821.002TAN H C,XU S Y,HUANG X,et al. Macro-scale finite element model for impact damage simulation and experimental verification of three-dimensional four-directional braided composites[J]. Acta Materiae Compositae Sinica,2018,35(5):1139-1148. doi: 10.13801/j.cnki.fhclxb.20170821.002 [8] 黄雄. 三维四向编织复合材料动态力学性能及鸟撞特性研究[D]. 南京:南京航空航天大学,2018.HUANG X. The Study on dynamic mechanical properties and bird-striking characteristics of 3D four-directional braided composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018. [9] LI Y,LYU Z,WANG P,et al. Finite element analyses on low-velocity impact responses of three-dimensional braided composites[J]. Fibers and Polymers,2021,22(8):2296-2305. doi: 10.1007/s12221-021-0597-6 [10] 苏蕴荃,陈昊,侯传涛,等. 基于单胞模型的三维四向编织复合材料力学性能研究[J]. 强度与环境,2022,49(4):34-41.SU Y Q,CHEN H,HOU C T,et al. Investigation on the mechanical properties of 3D four-directional braided composites based on the unit cell model[J]. Structure & Environment Engineering,2022,49(4):34-41. [11] MCNAUGHTON I I,CHISMAN S W. A study of hail impact at high speed on light alloy plates[R]. Trenton:Naval Air Warfare Center Aircraft Division,1940. [12] DORRIS J F. A Plasticity model for the crushing of ice[M]. Berlin,Heidelberg:Springer Berlin Heidelberg,1991:311-337. [13] KIM H,KEDWARD K T. Modeling hail ice impacts and predicting impact damage initiation in composite structures [ J ]. AIAA Journal,2000,38(7):1278-1288. [14] CARNEY K S,BENSON D J,DUBOIS P,et al. A phenomenological high strain rate model with failure for ice[J]. International Journal of Solids and Structures,2006,43(25/26):7820-7839. [15] TIPPMANN J D,KIM H,RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation[J]. International Journal of Impact Engineering,2013,57:43-54. doi: 10.1016/j.ijimpeng.2013.01.013 [16] 莫袁鸣,赵振华,罗刚,等. 复合材料层合板冰雹冲击损伤研究[J]. 重庆理工大学学报(自然科学),2020,34(3):112-121.MO Y M,ZHAO Z H,LUO G,et al. Investigation on damage of composite laminates subject to hail impact[J]. Journal of Chongqing University of Technology( Natural Science) 2020,34(3):112-121. [17] MOBASHER M E,ADAMS B,MOULD J,et al. Damage mechanics based analysis of hail impact on metal roofs[J]. Engineering Fracture Mechanics,2022,272:108688. doi: 10.1016/j.engfracmech.2022.108688 [18] 张超. 三维多向编织复合材料宏细观力学性能及高速冲击损伤研究[D]. 南京:南京航空航天大学,2013.ZHANG C. Research on macro-meso-mechanical properties and high velocity impact damage of 3D multi-directional braided composites [D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2013. [19] 孟卓,孙秦. 冰雹的数值模拟方法初探[J]. 航空计算技术,2009,39(1):22-26. doi: 10.3969/j.issn.1671-654X.2009.01.006MENG Z,SUN Q. Methods of numerical simulation on hailstone[J]. Aeronautical Computing Technique,2009,9(1):22-26. doi: 10.3969/j.issn.1671-654X.2009.01.006 [20] XU K,CHEN W,LIU L,et al. A hierarchical multiscale strategy for analyzing the impact response of 3D braided composites[J]. International Journal of Mechanical Sciences,2021,193:106167. doi: 10.1016/j.ijmecsci.2020.106167 [21] HE C,GE J,QI D,et al. A multiscale elastoplastic damage model for the nonlinear behavior of 3D braided composites[J]. Composites Science and Technology,2019,171:21-33. doi: 10.1016/j.compscitech.2018.12.003 [22] TAN H,HUANG X,LIU L,et al. Dynamic compressive behavior of four-step three-dimensional braided composites along three directions[J]. International Journal of Impact Engineering,2019,134:103366. doi: 10.1016/j.ijimpeng.2019.103366 [23] 许善迎,谭焕成,关玉璞,等. 三维四向编织复合材料力学性能预测及实验验证[J]. 材料工程,2018,46(6):132-140. doi: 10.11868/j.issn.1001-4381.2016.001135XU S Y,TAN H C,GUAN Y P,et al. Predication and experimental verification on mechanical properties of three-dimensional and four-direction braided composites[J]. Journal of Materials Engineering,2018,46(6):132-140. doi: 10.11868/j.issn.1001-4381.2016.001135 -