航空装备电弧熔丝增材制造技术发展及路线规划图

郑涛 郭绍庆 张国栋 施瀚超

郑涛, 郭绍庆, 张国栋, 施瀚超. 航空装备电弧熔丝增材制造技术发展及路线规划图[J]. 航空材料学报, 2023, 43(1): 18-27. doi: 10.11868/j.issn.1005-5053.2022.000207
引用本文: 郑涛, 郭绍庆, 张国栋, 施瀚超. 航空装备电弧熔丝增材制造技术发展及路线规划图[J]. 航空材料学报, 2023, 43(1): 18-27. doi: 10.11868/j.issn.1005-5053.2022.000207
ZHENG Tao, GUO Shaoqing, ZHANG Guodong, SHI Hanchao. Wire arc additive manufacturing technology development and route planning map for aviation equipment[J]. Journal of Aeronautical Materials, 2023, 43(1): 18-27. doi: 10.11868/j.issn.1005-5053.2022.000207
Citation: ZHENG Tao, GUO Shaoqing, ZHANG Guodong, SHI Hanchao. Wire arc additive manufacturing technology development and route planning map for aviation equipment[J]. Journal of Aeronautical Materials, 2023, 43(1): 18-27. doi: 10.11868/j.issn.1005-5053.2022.000207

航空装备电弧熔丝增材制造技术发展及路线规划图

doi: 10.11868/j.issn.1005-5053.2022.000207
详细信息
    通讯作者:

    郑涛(1990—),男,硕士,工程师,主要从事电弧熔丝增材制造丝材制备及工艺研究,联系地址:北京市海淀区温泉镇环山村10号(100095),E-mail: zhengtao572930@126.com

  • 中图分类号: TG441

Wire arc additive manufacturing technology development and route planning map for aviation equipment

  • 摘要: 电弧熔丝增材制造技术(wire arc additive manufacturing,WAAM)是一种高沉积效率的增材制造技术,采用逐层堆积的方式制备多种高性能的金属结构件,针对航空装备的大型、中等复杂的铝合金、钛合金WAAM成形技术的研究获得广泛关注。本文对WAAM技术定义、技术分类、成形系统及原理进行论述,综述了近年来国内外航空航天领域WAAM成形铝合金、钛合金的组织特性、冶金缺陷及质量改善、典型构件技术应用等方面的研究进展,分析了目前航空装备的大型、中等复杂构件WAAM成形技术所面临的关键共性问题,并提出了2035年WAAM成形技术路线规划图。

     

  • 图  1  电弧熔丝增材制造技术原理图[21]  (a)GMAW;(b)GTAW;(c)PAW

    Figure  1.  Schematic diagrams of WAAM[21] (a) GMAW; (b) GTAW; (c) PAW

    图  2  WAAM成形系统示意图[24]

    Figure  2.  Schematic diagram of the WAAM system[24]

    图  3  WAAM增材制造7055铝合金显微组织[27]  (a)最上层区域;(b)中间区域

    Figure  3.  Grain morphologies of 7055 aluminum alloy by WAAM[27]  (a) the last deposition layer; (b) middle deposition layer

    图  4  WAAM成形铝合金构件  (a)铝合金翼肋版[32];(b)燃料贮箱[33];(c)舱段件[34]

    Figure  4.  Aluminum parts formed by WAAM  (a) aluminum wing spar[32]; (b) fuel tank[33]; (c) cabin part[34]

    图  5  WAAM成形Ti-6Al-4V合金的显微组织[37]  (a)横截面;(b)顶部区域;(c)底部区域

    Figure  5.  Microstructures of Ti-6Al-4V alloy formed by WAAM[37]  (a) cross section; (b) upper layer; (b) bottom area

    图  6  航空装备WAAM成形技术发展路线规划图

    Figure  6.  WAAM forming technology development route planning map for aviation equipment

  • [1] 顾冬冬,张红梅,陈洪宇,等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光,2020,47(5):32-55.

    GU D D,ZHANG H M,CHEN H Y,et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers,2020,47(5):32-55.
    [2] ZHOU T,ZHENG T,YILDIZ A B,et al. Microstructure control during deposition and post-treatment to optimize mechanical properties of wire-arc additively manufactured 17-4 PH stainless steel[J]. Additive Manufacturing,2022,58:103047. doi: 10.1016/j.addma.2022.103047
    [3] 刘伟,李能,周标,等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报,2019,55(20):128-151.

    LIU W,LI N,ZHOU B,et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering,2019,55(20):128-151.
    [4] CHAKRABORTY D,TIRUMALA T,CHITRAL S,et al. The state of the art for wire arc additive manufacturing process of titanium alloys for aerospace applications[J]. Journal of Materials Engineering and Performance,2022,31:6149-6182. doi: 10.1007/s11665-022-07128-1
    [5] 任慧娇,周冠男,从保强,等. 增材制造技术在航空航天金属构件领域的发展及应用[J]. 航空制造技术,2020,63(10):72-77.

    REN H J,ZHOU G N,CONG B Q,et al. Development and application of metal additive manufacturing in aerospace field[J]. Aeronautical Manufacturing Technology,2020,63(10):72-77.
    [6] HÖNNIGE J R,COLEGROVE P A,GANGULY S,et al. Control of residual stress and distortion in aluminum wire+ arc additive manufacture with rolling[J]. Additive Manufacturing,2018,22:775-783. doi: 10.1016/j.addma.2018.06.015
    [7] DING D H,PAN Z X,CUIURI D,et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests[J]. The International Journal of Advanced Manufacturing Technology,2015,81(1):465-481.
    [8] TAN C L,WENG F,SUI S,et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools and Manufacture,2021,170:103804. doi: 10.1016/j.ijmachtools.2021.103804
    [9] ABOULKHAIR N T,SIMONELLI M,PARRY L,et al. 3D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting[J]. Progress in Materials Science,2019,106:100578. doi: 10.1016/j.pmatsci.2019.100578
    [10] WANG J D,LI L,LIN P,et al. Effect of TiC particle size on the microstructure and tensile properties of TiCp/Ti6Al4V composites fabricated by laser melting deposition[J]. Optics & Laser Technology,2018,105:195-206.
    [11] ZHANG L C,LIU Y,LI S,et al. Additive manufacturing of titanium alloys by electron beam melting: a review[J]. Advanced Engineering Materials,2018,20(5):1700842. doi: 10.1002/adem.201700842
    [12] ZHANG G D,LI N,GAO J S,et al. Wire-fed electron beam directed energy deposition of Ti–6Al–2Zr–1Mo–1V alloy and the effect of annealing on the microstructure, texture, and anisotropy of tensile properties[J]. Additive Manufacturing,2022,49:102511. doi: 10.1016/j.addma.2021.102511
    [13] SINGH S R,KHANNA P. Wire arc additive manufacturing (WAAM): a new process to shape engineering materials[J]. Materials Today:Proceedings,2021,44:118-128. doi: 10.1016/j.matpr.2020.08.030
    [14] 李权,王福德,王国庆,等. 航空航天轻质金属材料电弧熔丝增材制造技术[J]. 航空制造技术,2018,61(3):74-82.

    LI Q,WANG F D,WANG G Q,et al. Wire arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology,2018,61(3):74-82.
    [15] RALPH B. Method of making decorative articles: US1, 533, 300[P]. 1925-4-14.
    [16] RODRIGUES T A,DUARTE V,MIRANDA R M,et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials,2019,12(7):1121. doi: 10.3390/ma12071121
    [17] LI J Z,ALKAHARI M R,ROSLI N A B,et al. Review of wire arc additive manufacturing for 3D metal printing[J]. International Journal of Automation Technology,2019,13(3):346-353. doi: 10.20965/ijat.2019.p0346
    [18] IBRAHIM I A,MOHAMAT S A,AMIR A,et al. The effect of Gas Metal Arc Welding (GMAW) processes on different welding parameters[J]. Procedia Engineering,2012,41:1502-1506. doi: 10.1016/j.proeng.2012.07.342
    [19] WANG X, WANG A, WANG K, et al. Process stability for GTAW-based additive manufacturing[J]. Rapid Prototyping Journal, 2019, 25(5): 809-819.
    [20] BAI X W,COLEGROVE P,DING J,et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing[J]. International Journal of Heat and Mass Transfer,2018,124:504-516. doi: 10.1016/j.ijheatmasstransfer.2018.03.085
    [21] NORRISH J,POLDEN J,RICHARDSON I. A review of wire arc additive manufacturing: development, principles, process physics, implementation and current status[J]. Journal of Physics D,2021,54(47):473001. doi: 10.1088/1361-6463/ac1e4a
    [22] WU B T,PAN Z X,DING D H,et al. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement[J]. Journal of Manufacturing Processes,2018,35:127-139. doi: 10.1016/j.jmapro.2018.08.001
    [23] 郝轩,黄永德,陈伟,等. 基于CMT技术的铝合金电弧增材制造研究现状[J]. 精密成形工程,2018,10(5):88-94.

    HAO X,HUANG Y D,CHEN W,et al. Research status of the aluminum alloy arc additive manufacturing technology based on the CMT[J]. Journal of Netshape Forming Engineering,2018,10(5):88-94.
    [24] LI Y,SU C,ZHU J. Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects[J]. Results in Engineering,2021:100330.
    [25] 韩启飞,符瑞,胡锦龙,等. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程,2022,50(4):62-73. doi: 10.11868/j.issn.1001-4381.2021.000343

    HAN Q F,FU R,HU J L,et al. Research progress in wire arc additive manufacturing of aluminum alloy[J]. Journal of Materials Engineering,2022,50(4):62-73. doi: 10.11868/j.issn.1001-4381.2021.000343
    [26] WANG Z N,LIN X,WANG L L,et al. Microstructure evolution and mechanical properties of the wire+arc additive manufacturing Al-Cu alloy[J]. Additive Manufacturing,2021,47:102298. doi: 10.1016/j.addma.2021.102298
    [27] DONG B L,CAI X Y,LIN S B,et al. Wire arc additive manufacturing of Al-Zn-Mg-Cu alloy: microstructures and mechanical properties[J]. Additive Manufacturing,2020,36:101447. doi: 10.1016/j.addma.2020.101447
    [28] 郑涛,施瀚超,乔燕琦,等. ZL114A电弧熔丝增材制造、热处理工艺及组织与性能研究[J]. 电焊机,2020,50(9):245-250. doi: 10.7512/j.issn.1001-2303.2020.09.27

    ZHENG T,SHI H C,QIAO Y Q,et al. Wire arc additive manufacturing of ZL114A alloy, heat treatment, microstructures and mechanical property[J]. Electric Welding Machine,2020,50(9):245-250. doi: 10.7512/j.issn.1001-2303.2020.09.27
    [29] MAYER H,PAPAKYRIACOU M,ZETTL B,et al. Influence of porosity on the fatigue limit of die cast magnesium and aluminum alloys[J]. International Journal of Fatigue,2003,25(3):245-256. doi: 10.1016/S0142-1123(02)00054-3
    [30] CONG B Q,DING J L,WILLIAMS S W. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3% Cu alloy[J]. The International Journal of Advanced Manufacturing Technology,2015,76(9):1593-1606.
    [31] GU J L,DING J L,WILLIAMS S W,et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3 Cu alloy[J]. Materials Science and Engineering:A,2016,651:18-26. doi: 10.1016/j.msea.2015.10.101
    [32] GU J L, CONG B Q, DING J L, et al. Wire+ arc additive manufacturing of aluminum[C]//2014 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2014.
    [33] BOTILA L N. Considerations regarding aluminum alloys used in the aeronautic/aerospace industry and use of wire arc additive manufacturing WAAM for their industrial applications[J]. Welding and Material Testing,2020(4):1-16.
    [34] 李承德,顾惠敏,王伟,等. 电弧增材制造ZL114A铝合金的组织与性能[J]. 稀有金属材料与工程,2019,48(9):2917-2922.

    LI C D,GU H M,WANG W,et al. Microstructure and properties of ZL114A aluminum alloy prepared by wire arc additive manufacturing[J]. Rare Metal Materials and Engineering,2019,48(9):2917-2922.
    [35] 刘石双,曹京霞,周毅,等. Ti2AlNb合金研究与展望[J]. 中国有色金属学报,2021,31(11):3106-3126.

    LIU S S,CAO J X,ZHOU Y,et al. Research and prospect of Ti2AlNb alloy[J]. The Chinese Journal of Nonferrous Metals,2021,31(11):3106-3126.
    [36] 黄健康,吴昊盛,于晓全,等. 钛合金电弧增材制造工艺方法及微观组织调控的研究现状[J]. 材料导报,2023(14):1-9.

    HUANG J K,WU H S,YU X Q,et al. State of the art for titanium alloy wire arc additive manufacturing process and microstructure control[J]. Materials Reports,2023(14):1-9.
    [37] BAUFELD B,VANDERBIEST O,GAULT R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties[J]. Materials & Design,2010,31(Suppl 1):106-111.
    [38] LIN J J,LV Y H,LIU Y X,et al. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,69:19-29. doi: 10.1016/j.jmbbm.2016.12.015
    [39] 李长富,郑鉴深,周思雨,等. CMT电弧增材制造TC4钛合金的显微组织与力学性能[J]. 中国有色金属学报,2022,32(9):2609-2619.

    LI C F,ZHENG J S,ZHOU S Y,et al. Microstructure and mechanical properties of CMT wire arc additive manufactured Ti-6Al-4V titanium alloy[J]. The Chinese Journal of Nonferrous Metals,2022,32(9):2609-2619.
    [40] GOU J,SHEN J Q,HU S S,et al. Microstructure and mechanical properties of as-built and heat-treated Ti-6Al-4V alloy prepared by cold metal transfer additive manufacturing[J]. Journal of Manufacturing Processes,2019,42:41-50. doi: 10.1016/j.jmapro.2019.04.012
    [41] 何智,胡洋,曲宏韬,等. 超声冲击电弧增材制造钛合金零件的各向异性研究[J]. 航天制造技术,2016(6):11-16.

    HE Z,HU Y,QU H T,et al. Research on anisotropy of titanium alloy manufactured by ultrasonic impact treatment and wire and arc additive manufacture[J]. Aerospace Manufacturing Technology,2016(6):11-16.
    [42] BERMINGHAM M J,KENT D,ZHAN H,et al. Controlling the microstructure and properties of wire arc additive manufactured Ti-6Al-4V with trace boron additions[J]. Acta Materialia,2015,91:289-303. doi: 10.1016/j.actamat.2015.03.035
    [43] WILLIAMS S W,MARTINA F,ADDISON A C,et al. Wire+ arc additive manufacturing[J]. Materials Science and Technology,2016,32(7):641-647. doi: 10.1179/1743284715Y.0000000073
    [44] WANG J,PAN Z X,CUIURI D,et al. Phase constituent control and correlated properties of titanium aluminide intermetallic alloys through dual-wire arc additive manufacturing[J]. Materials Letters,2019,242:111-114. doi: 10.1016/j.matlet.2019.01.112
    [45] MIAO Y G,LI C W,ZHAO Y Y,et al. Material properties of gradient copper-nickel alloy fabricated by wire arc additive manufacturing based on bypass-current PAW[J]. Journal of Manufacturing Processes,2022,83:637-649. doi: 10.1016/j.jmapro.2022.09.037
    [46] 徐健宁,张华,胡瑢华,等. 熔焊快速成型中焊接工艺参数与焊缝几何尺寸的关系[J]. 焊接技术,2008,37(4):10-13. doi: 10.3969/j.issn.1002-025X.2008.04.004

    XU J N,ZHANG H,HU R H,et al. Relationship between the parameters of rapid prototying welding and welding seam sizes[J]. Welding Technology,2008,37(4):10-13. doi: 10.3969/j.issn.1002-025X.2008.04.004
    [47] 刘海华,高文强,赵淘,等. 基于电弧熔丝增材制造的复合路径规划方法[J]. 材料科学与工艺,2022,30(1):53-60.

    LIU H H,GAO W Q,ZHAO T,et al. A compound path planning method based on wire and arc additive manufacturing[J]. Materials Science and Technology,2022,30(1):53-60.
    [48] DING D H,PAN Z X,CUIURI D,et al. A tool-path generation strategy for wire and arc additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology,2014,73(1):173-183.
    [49] 黄无云. 机器人金属弧焊打印的路径规划软件设计及开发[D]. 南京: 南京师范大学, 2020.

    HUANG W Y. Path planning of robot metal arc welding printing software design and development[D]. Nanjing: Nanjing Normal University, 2020.
    [50] 丁东红,黄荣,张显程,等. 电弧增材制造研究进展: 多源信息传感[J]. 焊接技术,2022,51(10):1-20.

    DING D H,HUANG R,ZHANG X C,et al. Research progress of wire arc additive manufacturing: Multi-source information sensing[J]. Welding Technology,2022,51(10):1-20.
    [51] WU B T,DING D H,PAN Z X,et al. Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V[J]. Journal of Materials Processing Technology,2017,250:304-312. doi: 10.1016/j.jmatprotec.2017.07.037
    [52] 吕飞阅, 王磊磊, 高转妮, 等. CMT电弧增材制造过程电弧特性对熔滴过渡行为的影响机理研究[J/OL]. 机械工程学报: 1-13[2023-01-17]. http://kns.cnki.net/kcms/detail/11.2187.th.20221111.1111.002.html.

    LYU F Y, WANG L L, GAO Z N, et al. Influence mechanism of arc characteristics on droplet transfer behavior in CMT-based additive manufacturing[J]. Journal of Mechanical Engineering: 1-13[2023-01-17]. http://kns.cnki.net/kcms/detail/11.2187.th.20221111.1111.002.html.
    [53] OUYANG J H,WANG H,KOVACEVIC R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: process control and microstructure[J]. Materials and Manufacturing Processes,2002,17(1):103-124. doi: 10.1081/AMP-120002801
  • 加载中
图(6)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  31
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 修回日期:  2023-01-17
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回