[1] |
闫 雪,阮雪茜. 增材制造技术在航空发动机中的应用及发展[J]. 航空制造技术,2016(21):70-75. doi: 10.16080/j.issn1671-833x.2016.21.070YAN X,RUAN X Q. Application and development of additive manufacturing technology in aeroengine[J]. Aeronautical Manufacturing Technology,2016(21):70-75. doi: 10.16080/j.issn1671-833x.2016.21.070
|
[2] |
李涤尘,鲁中良,田小永,等. 增材制造——面向航空航天制造的变革性技术[J]. 航空学报,2022,43(4):525387. doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204004LI D C,LU Z L,TIAN X Y,et al. Additive manufacturing—revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):525387. doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204004
|
[3] |
任慧娇,周冠男,从保强,等. 增材制造技术在航空航天金属构件领域的发展及应用[J]. 航空制造技术,2020,63(10):72-77. doi: 10.16080/j.issn1671-833x.2020.10.072REN H J,ZHOU G N,CONG B Q,et al. Development and application of metal additive manufacturing in aerospace field[J]. Aeronautical Manufacturing Technology,2020,63(10):72-77. doi: 10.16080/j.issn1671-833x.2020.10.072
|
[4] |
巩水利, 刘建荣, 杨光, 等. 电子束熔丝沉积成形技术及应用[M]. 北京: 国防工业出版社, 2021.GONG S L, LIU J R, YANG G, et al. Electron beam wire deposition technology and application[M]. Beijing: National Defense Industry Press, 2021.
|
[5] |
熊华平, 郭绍庆, 刘伟, 等. 航空金属材料增材制造技术[M]. 北京: 航空工业出版社, 2019.XIONG H P, GUO S Q, LIU W, et al. Aeronautical metal material additive manufacturing technology[M]. Beijing: Aviation Industry Press, 2019.
|
[6] |
秦仁耀,张国栋,李 能,等. TiAl 基合金的增材制造技术研究进展[J]. 机 械 工 程 学 报,2021,57(8):115-132. doi: 10.3901/JME.2021.08.115QIN R Y,ZHANG G D,LI N,et al. Research progress on additive manufacturing of TiAl-based alloys[J]. Journal of Mechanical Engineering,2021,57(8):115-132. doi: 10.3901/JME.2021.08.115
|
[7] |
WESLEY A T,RAVI N S,MACKENZIE R R,et al. Correlation between microstructure and mechanical properties in an Inconel 718 deposit produced via electron beam freeform fabrication[J]. Journal of Manufacturing Science and Engineering,2014,136:061005. doi: 10.1115/1.4028509
|
[8] |
MATZ J E,EAGAR T W. Carbide formation in alloy 718 during electron-beam solid freeform fabrication[J]. Metallurgical & Materials Transactions A,2002,33(8):2559-2567.
|
[9] |
WANJARA P,BROCHU M,JAHAZI M. Electron beam freeforming of stainless steel using solid wire feed[J]. Materials and Design,2007,28:2278-2286. doi: 10.1016/j.matdes.2006.08.008
|
[10] |
WANJARA P, WATANABE K, FORMANOIR C, et al. Titanium alloy repair with wire-feed electron beam additive manufacturing technology[J/OL]. Advances in Materials Science and Engineering, 2019: 1-23. doi: 10.1155/2019/3979471.
|
[11] |
LACH C L, TAMINGER K, SCHUSZLER A B, et al. Effect of electron beam freeform fabrication ( EBF3 ) processing parameters on composition of Ti-6-4[C]//18th AeroMat Conference and Exposition. Baltimore, Maryland: NASA, 2007, 1-19.
|
[12] |
BUTER T M,BRICE C A,TAYON W A,et al. Evolution of texture from a single crystal Ti-6Al-4V substrate during electron beam directed energy deposition[J]. Metallurgical and Materials Transactions A,2017,48(10):4441-4446. doi: 10.1007/s11661-017-4219-2
|
[13] |
GONZALES D, LIU S, DOMACK M, HAFLEY R. Using powder cored tubular wire technology to enhance electron beam freeform fabricated structures[C]∥TMS 145th Annual Meeting & Exhibition. [S. l. ]: [s. n. ], 2016: 183-189.
|
[14] |
MITZNER S, LIU S, DOMACK M, et al. Grain refinement of freeform fabricated Ti-6Al-4V alloy using beam/arc modulation[C]. Austin: Solid Freeform Fabrication, 2012: 536-555.
|
[15] |
CRAIG A B,WESLEY A T,JOHN A N,et al. Effect of compositional changes on microstructure in additively manufactured aluminum alloy 2139[J]. Materials Characterization,2018,143:50-58. doi: 10.1016/j.matchar.2018.04.002
|
[16] |
陈国庆,树西,张秉刚,等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报,2018,39(8):123-128. doi: 10.12073/j.hjxb.2018390214CHEN G Q,SHU X,ZHANG B G,et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of The China Welding Institution,2018,39(8):123-128. doi: 10.12073/j.hjxb.2018390214
|
[17] |
常坤,梁恩泉,张韧,等. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报,2021,35(3):03176-03182. doi: 10.11896/cldb.19100153CHANG K,LIANG E Q,ZHANG R,et al. Status of metal additive manufacturing and its application research in the field of civil aviation[J]. Materials Reports,2021,35(3):03176-03182. doi: 10.11896/cldb.19100153
|
[18] |
巩水利,锁红波,李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术,2013(13):66-71. doi: 10.3969/j.issn.1671-833X.2013.13.012GONG S L,SUO H B,LI H X. Development and application of metal additive manufacturing technology[J]. Materials Reports,2013(13):66-71. doi: 10.3969/j.issn.1671-833X.2013.13.012
|
[19] |
VLADIMIR V P J,ALEXANDER K D,ANDREY G,et al. The effect of powder recycling on the mechanical properties and microstructure of electron beam melted Ti-6Al-4 V specimens[J]. Additive Manufacturing,2018,22:834-843. doi: 10.1016/j.addma.2018.06.003
|
[20] |
HAIZE G,ROBERT J W,DIANA A L,et al. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)[J]. Materials Science and Engineering:A,2017,685:417-428. doi: 10.1016/j.msea.2017.01.019
|
[21] |
CHU L A L,RICCARDO T,EMMANUEL M,et al. Effect of preheating on the thermal, microstructural and mechanical properties of selective electron beam melted Ti-6Al-4V components[J]. Materials and Design,2019,174:107792. doi: 10.1016/j.matdes.2019.107792
|
[22] |
ALFRED T S. Three dimensional surface topography characterization of the electron beam melted Ti6Al4V[J]. Metal Powder Report,2017,72(3):200-205. doi: 10.1016/j.mprp.2017.02.003
|
[23] |
TAMMAS W S,WITHERS P J,TODD I,et al. The effectiveness of hot isostatic pressing for closing porosity in titanium parts manufactured by selective electron beam melting[J]. Metallurgical and Materials Transactions A,2016,47(5):1939-1946. doi: 10.1007/s11661-016-3429-3
|
[24] |
POBEL C R,OSMANLIC F,LODES M A,et al. Processing windows for Ti-6Al-4V fabricated by selective electron beam melting with improved beam focus and different scan line spacings[J]. Rapid Prototyping Journal,2019,25(4):665-671. doi: 10.1108/RPJ-04-2018-0084
|
[25] |
SHUI X L,KENTA Y,MANAMI M,et al. Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting[J]. Materials Science and Engineering:A,2017,680:239-248. doi: 10.1016/j.msea.2016.10.059
|
[26] |
EDOUARD C,PARASKEVAS K,ERIC A J,et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting[J]. Acta Materialia,2018,142:82-94. doi: 10.1016/j.actamat.2017.09.047
|
[27] |
MARKUS R,LAÍS M R,INMACULADA L G,et al. Solution heat treatment of the single crystal nickel-base superalloy CMSX-4 fabricated by selective electron beam melting[J]. Advanced Engineering Materials,2015,17(10):1486-1493. doi: 10.1002/adem.201500037
|
[28] |
SCHWERDTFEGER J,KÖRNER C. Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss[J]. Intermetallics,2014,49(3):29-35.
|
[29] |
MOHAMMAD A,ALAHMARI A M,MOHAMMED M K,et al. Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting[J]. Materials,2017,211(10):1-16.
|
[30] |
JUECHTER V,FRANKE M M,MERENDA T,et al. Additive manufacturing of Ti-45Al-4Nb-C by selective electron beam melting for automotive applications[J]. Additive Manufacturing,2018,22:118-126. doi: 10.1016/j.addma.2018.05.008
|
[31] |
TODAI M,NAKANO T,LIU T,et al. Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Additive Manufacturing,2017,13:61-70. doi: 10.1016/j.addma.2016.11.001
|
[32] |
LAN B,WANG Y P,LIU Y H,et al. The influence of microstructural anisotropy on the hot deformation of wire arc additive manufactured (WAAM) Inconel 718[J]. Materials Science and Engineering:A,2021,823:141733. doi: 10.1016/j.msea.2021.141733
|
[33] |
ZHANG G D,XIONG H P,YU H,et al. Microstructure evolution and mechanical properties of wire-feed electron beam additive manufactured Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with different subtransus heat treatments[J]. Materials and Design,2020,195:109063. doi: 10.1016/j.matdes.2020.109063
|
[34] |
ZHANG G D,LI N,GAO J S,et al. Wire-fed electron beam directed energy deposition of Ti-6Al-2Zr-1Mo-1V alloy and the effect of annealing on the microstructure, texture, and anisotropy of tensile properties[J]. Additive Manufacturing,2022,49:102511. doi: 10.1016/j.addma.2021.102511
|
[35] |
ZHANG G D,LIU W,ZHANG P,et al. Chemical composition, microstructure, tensile and creep behavior of Ti60 alloy fabricated via electron beam directed energy deposition[J]. Materials,2022,15:3109. doi: 10.3390/ma15093109
|
[36] |
黄薇. 电子束增材制造钛合金的组织特征与拉伸性能研究[D]. 南昌: 南昌航空大学, 2017.HUANG W. Study on the characteristics of microstructure and tensile properties of titanium alloy by electron beam additive manufacturing [D]. Nanchang: Nanchang Hangkong University, 2017.
|
[37] |
汤群. 钛合金电子束快速成形缺陷形成机理研究[D]. 武汉: 华中科技大学, 2015.TANG Q. Research on defects formation mechanism of titanium alloy in electron beam freeform fabrication [D]. Wuhan: Huazhong University of Science & Technology, 2015.
|
[38] |
TANG H P,QIAN M,LIU N,et al. Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting[J]. JOM,2015,67(3):555-563. doi: 10.1007/s11837-015-1300-4
|
[39] |
WEI C B,MA X L,YANG X J,et al. Microstructural and property evolution of Ti6Al4V powders with the number of usage in additive manufacturing by electron beam melting[J]. Materials Letters,2018,221:111-114. doi: 10.1016/j.matlet.2018.03.124
|
[40] |
KLASSEN A,FORSTER V E,JUECHTER V,et al. Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl[J]. Journal of Materials Processing Technology,2017,247:280-288. doi: 10.1016/j.jmatprotec.2017.04.016
|
[41] |
KAN W,CHEN B,JIN C,et al. Microstructure and mechanical properties of a high Nb-TiAl alloy fabricated by electron beam melting[J]. Materials and Design,2018,160:611-623. doi: 10.1016/j.matdes.2018.09.044
|
[42] |
陈 玮,李志强. 航空钛合金增材制造的机遇和挑战[J]. 航空制造技术,2018,61(10):30-37. doi: 10.16080/j.issn1671-833x.2018.10.030CHEN W,LI Z Q. Additive manufacturing of aerospace titanium alloys: Opportunities and challenges[J]. Aeronautical Manufacturing Technology,2018,61(10):30-37. doi: 10.16080/j.issn1671-833x.2018.10.030
|
[43] |
吴凡,林博超,权银洙,等. 电子束增材制造设备及应用进展[J]. 真空,2018,61(10):30-37.WU F,LIN B C,QUAN Y Z,et al. Review on equipment and application of electron-beam based additive manufacturing[J]. Aeronautical Manufacturing Technology,2018,61(10):30-37.
|
[44] |
MARTIN J H,YAHATA B D,HUNDLEY J M,et al. 3D printing of high-strength aluminium alloys[J]. Nature,2017,549:365-369. doi: 10.1038/nature23894
|
[45] |
TENGTENG SUN,YAKAI XIAO,GUANDONG LUO,et al. Roadmap to improve the printability of a non-castable alloy for additive manufacturing[J]. Metallurgical and Materials Transactions A,2012,53:2780-2795.
|
[46] |
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报,2014,35(10):2690-2698. doi: 10.7527/S1000-6893.2014.0174WANG H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components,2014, 35(10): 2690-2698.[J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2690-2698. doi: 10.7527/S1000-6893.2014.0174
|