航空装备电子束增材制造技术发展及路线图

张国栋 许乔郅 郑涛 郭绍庆 熊华平

张国栋, 许乔郅, 郑涛, 郭绍庆, 熊华平. 航空装备电子束增材制造技术发展及路线图[J]. 航空材料学报, 2023, 43(1): 28-38. doi: 10.11868/j.issn.1005-5053.2022.000209
引用本文: 张国栋, 许乔郅, 郑涛, 郭绍庆, 熊华平. 航空装备电子束增材制造技术发展及路线图[J]. 航空材料学报, 2023, 43(1): 28-38. doi: 10.11868/j.issn.1005-5053.2022.000209
ZHANG Guodong, XU Qiaozhi, ZHENG Tao, GUO Shaoqing, XIONG Huaping. Technology development and roadmap of electron beam additive manufacturing for aviation equipments[J]. Journal of Aeronautical Materials, 2023, 43(1): 28-38. doi: 10.11868/j.issn.1005-5053.2022.000209
Citation: ZHANG Guodong, XU Qiaozhi, ZHENG Tao, GUO Shaoqing, XIONG Huaping. Technology development and roadmap of electron beam additive manufacturing for aviation equipments[J]. Journal of Aeronautical Materials, 2023, 43(1): 28-38. doi: 10.11868/j.issn.1005-5053.2022.000209

航空装备电子束增材制造技术发展及路线图

doi: 10.11868/j.issn.1005-5053.2022.000209
详细信息
    通讯作者:

    张国栋(1987—),男,博士,高级工程师,研究方向为航空金属材料及结构的电子束增材制造和电子束焊接,联系地址:北京市海淀区温泉镇环山村8号院(100095), E-mail:zzggdd2010@163.com

  • 中图分类号: TG441

Technology development and roadmap of electron beam additive manufacturing for aviation equipments

Funds: WANG H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2690-2698.)
  • 摘要: 增材制造技术在航空装备领域具有广泛的发展前景。作为重要的金属增材制造工艺方法,电子束增材制造正处于快速发展阶段。电子束熔丝增材制造技术可满足航空大尺寸结构件的快速低成本制造,并可用于高价值零件的修复。电子束选区熔化增材制造技术在复杂结构以及难熔合金制件的制造方面具有显著优势。本文在对国内外电子束增材制造技术现状和发展趋势分析的基础上,从发展需求、目标、共性关键技术、应用、战略支撑与保障5个方面综合分析,绘制了面向2035年的航空装备电子束增材制造技术路线图,以期为航空装备电子束增材制造技术发展提供参考。

     

  • 图  1  电子束增材制造原理示意图  (a)熔丝;(b)选区熔化

    Figure  1.  Schematic diagram of electron beam additive manufacturing  (a) wire-feed;(b) electron beam selective melting

    图  2  电子束熔丝增材制造Ti-6Al-4V的晶粒YZ面IPF图 (a)α相;(b)重构获得的原始β相[12]

    Figure  2.  IPF maps of YZ plane of Ti-6Al-4V grain produced by wire-feed electron beam additive manufacturing (a)α phase;(b)reconstructed prior-β phase [12]

    图  3  电子束熔丝增材制造的钛合金零件  (a)万向节;(b) 支座 [5]

    Figure  3.  Titanium alloy components made by wire-feed electron beam additive manufacturing   (a) cardan joint;(b) support [5]

    图  4  电子束熔丝增材在国外航空装备上的应用 (a)A320neo飞机后上翼梁[17];(b)F-35飞机翼梁 [18]

    Figure  4.  Application of wire-feed electron beam additive manufacturing used in foreign avition equipment  (a) rear upper spar for A320neo airplane [17] ;(b) spar for F-35 fighter [18]

    图  5  电子束选区熔化增材制造的发动机叶环 [5]

    Figure  5.  Aeroengine blade ring made by electron beam selective melting additive manufacturing[5]

    图  6  电子束选区熔化增材制造的TiAl低压涡轮叶片[6]

    Figure  6.  TiAl alloy low-pressure turbine blade made by electron beam selective melting additive manufacturing[6]

    图  7  增材制造的TC17钛合金不同温度固溶处理后的微观组织[33] (a)750 ℃;(b)800 ℃;(c)850 ℃

    Figure  7.  Microstructures of additive manufactured TC17 alloy specimens solution treated at different temperature[33]  (a) 750 °C; (b) 800 °C; (c) 850 °C

    图  8  面向2035年的航空装备电子束增材制造发展技术路线图

    Figure  8.  Technology roadmap for the development of electron beam additive manufacturing of aviation equipment towards 2035

  • [1] 闫 雪,阮雪茜. 增材制造技术在航空发动机中的应用及发展[J]. 航空制造技术,2016(21):70-75. doi: 10.16080/j.issn1671-833x.2016.21.070

    YAN X,RUAN X Q. Application and development of additive manufacturing technology in aeroengine[J]. Aeronautical Manufacturing Technology,2016(21):70-75. doi: 10.16080/j.issn1671-833x.2016.21.070
    [2] 李涤尘,鲁中良,田小永,等. 增材制造——面向航空航天制造的变革性技术[J]. 航空学报,2022,43(4):525387. doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204004

    LI D C,LU Z L,TIAN X Y,et al. Additive manufacturing—revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):525387. doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204004
    [3] 任慧娇,周冠男,从保强,等. 增材制造技术在航空航天金属构件领域的发展及应用[J]. 航空制造技术,2020,63(10):72-77. doi: 10.16080/j.issn1671-833x.2020.10.072

    REN H J,ZHOU G N,CONG B Q,et al. Development and application of metal additive manufacturing in aerospace field[J]. Aeronautical Manufacturing Technology,2020,63(10):72-77. doi: 10.16080/j.issn1671-833x.2020.10.072
    [4] 巩水利, 刘建荣, 杨光, 等. 电子束熔丝沉积成形技术及应用[M]. 北京: 国防工业出版社, 2021.

    GONG S L, LIU J R, YANG G, et al. Electron beam wire deposition technology and application[M]. Beijing: National Defense Industry Press, 2021.
    [5] 熊华平, 郭绍庆, 刘伟, 等. 航空金属材料增材制造技术[M]. 北京: 航空工业出版社, 2019.

    XIONG H P, GUO S Q, LIU W, et al. Aeronautical metal material additive manufacturing technology[M]. Beijing: Aviation Industry Press, 2019.
    [6] 秦仁耀,张国栋,李 能,等. TiAl 基合金的增材制造技术研究进展[J]. 机 械 工 程 学 报,2021,57(8):115-132. doi: 10.3901/JME.2021.08.115

    QIN R Y,ZHANG G D,LI N,et al. Research progress on additive manufacturing of TiAl-based alloys[J]. Journal of Mechanical Engineering,2021,57(8):115-132. doi: 10.3901/JME.2021.08.115
    [7] WESLEY A T,RAVI N S,MACKENZIE R R,et al. Correlation between microstructure and mechanical properties in an Inconel 718 deposit produced via electron beam freeform fabrication[J]. Journal of Manufacturing Science and Engineering,2014,136:061005. doi: 10.1115/1.4028509
    [8] MATZ J E,EAGAR T W. Carbide formation in alloy 718 during electron-beam solid freeform fabrication[J]. Metallurgical & Materials Transactions A,2002,33(8):2559-2567.
    [9] WANJARA P,BROCHU M,JAHAZI M. Electron beam freeforming of stainless steel using solid wire feed[J]. Materials and Design,2007,28:2278-2286. doi: 10.1016/j.matdes.2006.08.008
    [10] WANJARA P, WATANABE K, FORMANOIR C, et al. Titanium alloy repair with wire-feed electron beam additive manufacturing technology[J/OL]. Advances in Materials Science and Engineering, 2019: 1-23. doi: 10.1155/2019/3979471.
    [11] LACH C L, TAMINGER K, SCHUSZLER A B, et al. Effect of electron beam freeform fabrication ( EBF3 ) processing parameters on composition of Ti-6-4[C]//18th AeroMat Conference and Exposition. Baltimore, Maryland: NASA, 2007, 1-19.
    [12] BUTER T M,BRICE C A,TAYON W A,et al. Evolution of texture from a single crystal Ti-6Al-4V substrate during electron beam directed energy deposition[J]. Metallurgical and Materials Transactions A,2017,48(10):4441-4446. doi: 10.1007/s11661-017-4219-2
    [13] GONZALES D, LIU S, DOMACK M, HAFLEY R. Using powder cored tubular wire technology to enhance electron beam freeform fabricated structures[C]∥TMS 145th Annual Meeting & Exhibition. [S. l. ]: [s. n. ], 2016: 183-189.
    [14] MITZNER S, LIU S, DOMACK M, et al. Grain refinement of freeform fabricated Ti-6Al-4V alloy using beam/arc modulation[C]. Austin: Solid Freeform Fabrication, 2012: 536-555.
    [15] CRAIG A B,WESLEY A T,JOHN A N,et al. Effect of compositional changes on microstructure in additively manufactured aluminum alloy 2139[J]. Materials Characterization,2018,143:50-58. doi: 10.1016/j.matchar.2018.04.002
    [16] 陈国庆,树西,张秉刚,等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报,2018,39(8):123-128. doi: 10.12073/j.hjxb.2018390214

    CHEN G Q,SHU X,ZHANG B G,et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of The China Welding Institution,2018,39(8):123-128. doi: 10.12073/j.hjxb.2018390214
    [17] 常坤,梁恩泉,张韧,等. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报,2021,35(3):03176-03182. doi: 10.11896/cldb.19100153

    CHANG K,LIANG E Q,ZHANG R,et al. Status of metal additive manufacturing and its application research in the field of civil aviation[J]. Materials Reports,2021,35(3):03176-03182. doi: 10.11896/cldb.19100153
    [18] 巩水利,锁红波,李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术,2013(13):66-71. doi: 10.3969/j.issn.1671-833X.2013.13.012

    GONG S L,SUO H B,LI H X. Development and application of metal additive manufacturing technology[J]. Materials Reports,2013(13):66-71. doi: 10.3969/j.issn.1671-833X.2013.13.012
    [19] VLADIMIR V P J,ALEXANDER K D,ANDREY G,et al. The effect of powder recycling on the mechanical properties and microstructure of electron beam melted Ti-6Al-4 V specimens[J]. Additive Manufacturing,2018,22:834-843. doi: 10.1016/j.addma.2018.06.003
    [20] HAIZE G,ROBERT J W,DIANA A L,et al. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)[J]. Materials Science and Engineering:A,2017,685:417-428. doi: 10.1016/j.msea.2017.01.019
    [21] CHU L A L,RICCARDO T,EMMANUEL M,et al. Effect of preheating on the thermal, microstructural and mechanical properties of selective electron beam melted Ti-6Al-4V components[J]. Materials and Design,2019,174:107792. doi: 10.1016/j.matdes.2019.107792
    [22] ALFRED T S. Three dimensional surface topography characterization of the electron beam melted Ti6Al4V[J]. Metal Powder Report,2017,72(3):200-205. doi: 10.1016/j.mprp.2017.02.003
    [23] TAMMAS W S,WITHERS P J,TODD I,et al. The effectiveness of hot isostatic pressing for closing porosity in titanium parts manufactured by selective electron beam melting[J]. Metallurgical and Materials Transactions A,2016,47(5):1939-1946. doi: 10.1007/s11661-016-3429-3
    [24] POBEL C R,OSMANLIC F,LODES M A,et al. Processing windows for Ti-6Al-4V fabricated by selective electron beam melting with improved beam focus and different scan line spacings[J]. Rapid Prototyping Journal,2019,25(4):665-671. doi: 10.1108/RPJ-04-2018-0084
    [25] SHUI X L,KENTA Y,MANAMI M,et al. Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting[J]. Materials Science and Engineering:A,2017,680:239-248. doi: 10.1016/j.msea.2016.10.059
    [26] EDOUARD C,PARASKEVAS K,ERIC A J,et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting[J]. Acta Materialia,2018,142:82-94. doi: 10.1016/j.actamat.2017.09.047
    [27] MARKUS R,LAÍS M R,INMACULADA L G,et al. Solution heat treatment of the single crystal nickel-base superalloy CMSX-4 fabricated by selective electron beam melting[J]. Advanced Engineering Materials,2015,17(10):1486-1493. doi: 10.1002/adem.201500037
    [28] SCHWERDTFEGER J,KÖRNER C. Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss[J]. Intermetallics,2014,49(3):29-35.
    [29] MOHAMMAD A,ALAHMARI A M,MOHAMMED M K,et al. Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting[J]. Materials,2017,211(10):1-16.
    [30] JUECHTER V,FRANKE M M,MERENDA T,et al. Additive manufacturing of Ti-45Al-4Nb-C by selective electron beam melting for automotive applications[J]. Additive Manufacturing,2018,22:118-126. doi: 10.1016/j.addma.2018.05.008
    [31] TODAI M,NAKANO T,LIU T,et al. Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Additive Manufacturing,2017,13:61-70. doi: 10.1016/j.addma.2016.11.001
    [32] LAN B,WANG Y P,LIU Y H,et al. The influence of microstructural anisotropy on the hot deformation of wire arc additive manufactured (WAAM) Inconel 718[J]. Materials Science and Engineering:A,2021,823:141733. doi: 10.1016/j.msea.2021.141733
    [33] ZHANG G D,XIONG H P,YU H,et al. Microstructure evolution and mechanical properties of wire-feed electron beam additive manufactured Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with different subtransus heat treatments[J]. Materials and Design,2020,195:109063. doi: 10.1016/j.matdes.2020.109063
    [34] ZHANG G D,LI N,GAO J S,et al. Wire-fed electron beam directed energy deposition of Ti-6Al-2Zr-1Mo-1V alloy and the effect of annealing on the microstructure, texture, and anisotropy of tensile properties[J]. Additive Manufacturing,2022,49:102511. doi: 10.1016/j.addma.2021.102511
    [35] ZHANG G D,LIU W,ZHANG P,et al. Chemical composition, microstructure, tensile and creep behavior of Ti60 alloy fabricated via electron beam directed energy deposition[J]. Materials,2022,15:3109. doi: 10.3390/ma15093109
    [36] 黄薇. 电子束增材制造钛合金的组织特征与拉伸性能研究[D]. 南昌: 南昌航空大学, 2017.

    HUANG W. Study on the characteristics of microstructure and tensile properties of titanium alloy by electron beam additive manufacturing [D]. Nanchang: Nanchang Hangkong University, 2017.
    [37] 汤群. 钛合金电子束快速成形缺陷形成机理研究[D]. 武汉: 华中科技大学, 2015.

    TANG Q. Research on defects formation mechanism of titanium alloy in electron beam freeform fabrication [D]. Wuhan: Huazhong University of Science & Technology, 2015.
    [38] TANG H P,QIAN M,LIU N,et al. Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting[J]. JOM,2015,67(3):555-563. doi: 10.1007/s11837-015-1300-4
    [39] WEI C B,MA X L,YANG X J,et al. Microstructural and property evolution of Ti6Al4V powders with the number of usage in additive manufacturing by electron beam melting[J]. Materials Letters,2018,221:111-114. doi: 10.1016/j.matlet.2018.03.124
    [40] KLASSEN A,FORSTER V E,JUECHTER V,et al. Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl[J]. Journal of Materials Processing Technology,2017,247:280-288. doi: 10.1016/j.jmatprotec.2017.04.016
    [41] KAN W,CHEN B,JIN C,et al. Microstructure and mechanical properties of a high Nb-TiAl alloy fabricated by electron beam melting[J]. Materials and Design,2018,160:611-623. doi: 10.1016/j.matdes.2018.09.044
    [42] 陈 玮,李志强. 航空钛合金增材制造的机遇和挑战[J]. 航空制造技术,2018,61(10):30-37. doi: 10.16080/j.issn1671-833x.2018.10.030

    CHEN W,LI Z Q. Additive manufacturing of aerospace titanium alloys: Opportunities and challenges[J]. Aeronautical Manufacturing Technology,2018,61(10):30-37. doi: 10.16080/j.issn1671-833x.2018.10.030
    [43] 吴凡,林博超,权银洙,等. 电子束增材制造设备及应用进展[J]. 真空,2018,61(10):30-37.

    WU F,LIN B C,QUAN Y Z,et al. Review on equipment and application of electron-beam based additive manufacturing[J]. Aeronautical Manufacturing Technology,2018,61(10):30-37.
    [44] MARTIN J H,YAHATA B D,HUNDLEY J M,et al. 3D printing of high-strength aluminium alloys[J]. Nature,2017,549:365-369. doi: 10.1038/nature23894
    [45] TENGTENG SUN,YAKAI XIAO,GUANDONG LUO,et al. Roadmap to improve the printability of a non-castable alloy for additive manufacturing[J]. Metallurgical and Materials Transactions A,2012,53:2780-2795.
    [46] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报,2014,35(10):2690-2698. doi: 10.7527/S1000-6893.2014.0174

    WANG H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components,2014, 35(10): 2690-2698.[J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2690-2698. doi: 10.7527/S1000-6893.2014.0174
  • 加载中
图(8)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  17
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 修回日期:  2023-01-17
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回