航空装备激光增材制造技术发展及路线图

王天元 黄帅 周标 郑涛 张国栋 郭绍庆

王天元, 黄帅, 周标, 郑涛, 张国栋, 郭绍庆. 航空装备激光增材制造技术发展及路线图[J]. 航空材料学报, 2023, 43(1): 1-17. doi: 10.11868/j.issn.1005-5053.2022.000210
引用本文: 王天元, 黄帅, 周标, 郑涛, 张国栋, 郭绍庆. 航空装备激光增材制造技术发展及路线图[J]. 航空材料学报, 2023, 43(1): 1-17. doi: 10.11868/j.issn.1005-5053.2022.000210
WANG Tianyuan, HUANG Shuai, ZHOU Biao, ZHENG Tao, ZHANG Guodong, GUO Shaoqing. Development and roadmap of laser additive manufacturing technology for aviation equipment[J]. Journal of Aeronautical Materials, 2023, 43(1): 1-17. doi: 10.11868/j.issn.1005-5053.2022.000210
Citation: WANG Tianyuan, HUANG Shuai, ZHOU Biao, ZHENG Tao, ZHANG Guodong, GUO Shaoqing. Development and roadmap of laser additive manufacturing technology for aviation equipment[J]. Journal of Aeronautical Materials, 2023, 43(1): 1-17. doi: 10.11868/j.issn.1005-5053.2022.000210

航空装备激光增材制造技术发展及路线图

doi: 10.11868/j.issn.1005-5053.2022.000210
详细信息
    通讯作者:

    郭绍庆(1969—),男,博士,研究员,主要从事的研究方向为熔化焊及增材制造工艺,联系地址:北京市海淀区温泉镇环山村路8号(100095),E-mail: gsq0046@sina.com

  • 中图分类号: TG665

Development and roadmap of laser additive manufacturing technology for aviation equipment

  • 摘要: 激光增材制造支持结构设计创新、快速研制和验证,是当前航空装备领域最具代表性的增材制造方法,其中激光选区熔化主要应用于复杂精密功能结构的精确近净成形制造,激光直接沉积主要用于大尺寸复杂承载结构的制造。为支撑航空领域增材制造技术发展的战略布局,本文对激光增材制造现状和发展趋势进行梳理,指出增材制造发展重点必然会转向产品的冶金质量、力学性能及其稳定性控制方面,增材制造设备的在线监测、参数自整定控制等智能化功能的研究开发正成为设备的研发热点,基于损伤失效分析、寿命预测研究的增材制件力学行为研究以及基于元件、特征结构的性能考核验证技术,开始引起工程应用部门的关注。在对技术发展趋势分析的基础上,提出2035年航空领域激光增材制造技术发展目标和相应的政策和环境支撑、保障需求,并给出2035年技术发展路线图建议。

     

  • 图  1  激光选区熔化(SLM)示意图

    Figure  1.  Schematic diagram of selective laser melting (SLM)

    图  2  激光直接沉积成形原理

    Figure  2.  Principle of laser direct metal deposition

    图  3  激光增材制造的Eurostar E3000 卫星支架

    Figure  3.  Laser additive manufactured Eurostar E3000 satellite support

    图  4  T25传感器壳体

    Figure  4.  T25 sensor housing

    图  5  增材制造燃油喷嘴

    Figure  5.  Additive manufactured fuel nozzle

    图  6  Trent XWB-84发动机中间级压缩机匣

    Figure  6.  Case of intermediate stage compressor in Trent XWB-84 engine

    图  7  基于分区扫描成形的激光增材制造工艺(a)、(b)分区扫描轨迹规划;(c)增材制造毛坯

    Figure  7.  Laser additive manufacturing process based on zonal scanning forming (a),(b) zonal scanning trajectory planning; (c) additive manufactured blank

    表  1  国际商业化SLM装备指标参考

    Table  1.   Index reference of international commercialized SLM equipments

    ManufactorEquipmentEnergy
    source/W
    Build
    dimension/
    mm3
    Powder
    spreading brush
    Layer
    thickness/
    μm
    Optical
    system
    Focus spot
    diameter/
    μm
    Maximum
    scanning
    speed/
    (m·s−1
    Forming
    environment
    EOSM 290400250×250×325Compression type20-100F-θ focus mirror+scanning galvanometer1007Preheating+inert atmosphere chamber
    EOSM 4001000400×400×400Compression type30-60F-θ focus mirror+scanning galvanometer60-3007No preheating +inert atmosphere chamber
    RealizerSLM 300200/
    400
    300×300×300Flexible20-100F-θ focus mirror+scanning galvanometer70-2005No preheating +inert atmosphere chamber
    Concept laserX line 1000R1000630×400×500Compression type30-200F-θ focus mirror+CNC laser head movement100-5007Preheating+inert atmosphere chamber
    SLM solutionSLM 500HL2×1000500×280×325Compression type20-200F-θ focus mirror+scanning galvanometer80-15015No preheating +inert atmosphere chamber
    3D SystemssPro250200250×250×300Flexible50-200F-θ focus mirror+scanning galvanometer50-1507No preheating +inert atmosphere chamber
    Renishaw PLCAm250200
    400
    250×250×301Compression type30-100F-θ focus mirror+scanning galvanometer70-1005No preheating +inert atmosphere chamber
    Phenix systemsPXL200250×250×302Flexible20-50F-θ focus mirror+scanning galvanometer50-1007No preheating +inert atmosphere chamber
    下载: 导出CSV

    表  2  2035年航空领域激光增材制造技术发展路线图

    Table  2.   Development roadmap of laser additive manufacturing technology in aviation field to 2035

    重点方向Key directions2025年
    2025
    2030年
    2030
    2035年
    2035
    1:复杂结构激光选区熔化增材制造
    2:承力结构激光直接沉积增材制造
    3:耐高温新型材料增材制造
    1: Selective laser melting of complex structures
    2: Laser direct metal deposition of load-bearing structures
    3: Additive manufactur-
    ing of high temperature resistant new material
    技术:普通金属增材制造的组织-性能-变形控制技术全面突破,性能验证基本完成,功能考核部分完成,部分产品进入量产。金属间化合物增材制造物理冶金原理得到揭示。
    应用:增材制造的航空飞机次承力结构和发动机静止零部件得到大量应用。
    Technology: The control technology of microstructure, property and deformation for additive manufacturing of ordinary metal has made a comprehensive breakthrough, the performance verification has been basically completed, the functional assessment has been partially completed, and some products have entered mass production. The physical metallurgy principle of intermetallic compound additive manufacturing has been revealed.
    Application: The secondary load-bearing structures of aircraft and static engine parts made by additive manufacturing have been widely used.
    技术:普通金属增材制造全面量产应用。金属间化合物增材制造的组织-性能-变形控制技术全面突破,性能验证基本完成,功能考核部分完成,部分产品进入量产。铌-硅、陶瓷基材料增材制造物理冶金原理得到揭示。
    应用:增材制造的航空飞机重要承力结构和发动机旋转零部件得到大量应用。
    Technology: Additive manufacturing of general metal is fully used in mass production. The control technology of microstructure, property and deformation for additive manufacturing of intermetallic compound has made a comprehensive breakthrough, the performance verification has been basically completed, the functional assessment has been partially completed, and some products have entered mass production. The physical metallurgy principle of additive manufacturing in Nb-Si and ceramic matrix material has been revealed.
    Application: The important load-bearing structures and engine rotating parts of aircraft made by additive manufacturing have been widely used.
    技术:金属间化合物增材产品完成性能验证、功能考核、定型,进入全面批量应用。铌-硅、陶瓷基材料增材制造的组织-性能-变形控制技术全面突破,性能验证、功能考核部分完成,部分产品开始进入应用。
    应用:增材制造的航空新材料、新结构零部件得到应用。
    Technology: The performance verification, functional assessment and finalization of additive manufactured intermetallic compound products have been completed, and products related have entered into full batch application. The control technology of microstructure, property and deformation for additive manufacturing of Nb-Si and ceramic based material additive manufacturing has made a comprehensive breakthrough. The performance verification and functional assessment of these materials have been partially completed, and some products have begun to be applied.
    Application: New aeronautical materials and new structural parts made by additive manufacturing are applied.
    下载: 导出CSV
  • [1] 田宗军,顾冬冬,沈理达,等. 激光增材制造技术在航空航天领域的应用与发展[J]. 航空制造技术,2015,58(11):41-45.

    TIAN Z J,GU D D,SHEN L D,et al. Application and development of laser additive manufacturing technology in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology,2015,58(11):41-45.
    [2] 林鑫,黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展,2015,34(9):684-688. doi: 10.7502/j.issn.1674-3962.2015.09.06

    LIN X,HUANG W D. High performance metal additive manufacturing technology applied in aviation field[J]. Materials China,2015,34(9):684-688. doi: 10.7502/j.issn.1674-3962.2015.09.06
    [3] 闫雪,阮雪茜. 增材制造技术在航空发动机中的应用及发展[J]. 航空制造技术,2016,59(21):70-75.

    YAN X,RUAN X Q. Application and development of additive manufacturing technology in aeroengine[J]. Aeronautical Manufacturing Technology,2016,59(21):70-75.
    [4] 熊华平, 郭绍庆, 刘伟, 等. 航空金属材料增材制造技术[M]. 北京: 航空工业出版社, 2019.
    [5] NIKOLAY K T,SERGEI E M,IGOR A Y,et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal,2004(10):78-87.
    [6] MEIER H,HABERLAND C. Experimental studies on selective laser melting of metallic parts[J]. Materialwissenschaft und Werkstofftechnik,2008,39(9):665-670. doi: 10.1002/mawe.200800327
    [7] CHILDS T H C,HAUSER C,BADROSSAMAY M. Mapping and modeling single scan track formation in direct metal selective laser melting[J]. Cirp Annals-Manufacturing Technology,2004,53(1):191-194. doi: 10.1016/S0007-8506(07)60676-3
    [8] 陈玮,李志强. 航空钛合金增材制造的机遇和挑战[J]. 航空制造技术,2018,61(10):30-37.

    CHEN W,LI Z Q. Additive manufacturing of aerospace titanium alloys: opportunities and challenges[J]. Aeronautical Manufacturing Technology,2018,61(10):30-37.
    [9] GRIFFITH M L,SCHLIENGER M E,HARWELL L D,et al. Understanding thermal behavior in the LENS process[J]. Materials & Design,1999,20(2):107-113.
    [10] GUNATNNA M,HENYR S,CLETON F,et al. Epitaxial laser metal forming: analysis of microstructure formation[J]. Materials Science & Engineering:A,1999,271(1/2):232-241.
    [11] GÄUMANN M,BEZENCON C,CANALIS P,et al. Single-crystal laser deposition of superalloys: processing-microstructure maps[J]. Acta Materialia,2001,49(6):1051-1062. doi: 10.1016/S1359-6454(00)00367-0
    [12] LIU C M,TIAN X J,TANG H B,et al. Obtaining bimodal microstructure in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Materials Science & Engineering:A,2014,609:177-184.
    [13] 杨强,鲁中良,黄福享,等. 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术,2016,59(12):26-31.

    YANG Q,LU Z L,HUANG F X,et al. Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology,2016,59(12):26-31.
    [14] LI N,HUANG S,ZHANG G D,et a1. Progress in additive manufacturing on new materials: a review[J]. Journal of Materials Science & Technology,2019,35:242-269.
    [15] 王华明. 高性能金属构件增材制造技术开启国防制造新篇章[J]. 国防制造技术,2013(3):5-7.

    Wang H M. Additive manufacturing of high-performance metallic structures opens a new page of manufacturing for the national defense industry[J]. Defense Manufacturing Technology,2013(3):5-7.
    [16] GU D D, SHI X Y, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science 2021, 372, eabg1487.
    [17] 姚喆赫,姚建华,向巧. 激光再制造技术与应用发展研究[J]. 中国工程科学,2020,22(3):63-70.

    YAO Z H,YAO J H,XIANG Q. Development of laser remanufacturing technology and application[J]. Strategic Study of CAE,2020,22(3):63-70.
    [18] 吴斌,王向明,玄明昊,等. 基于增材制造的新型战机结构创新[J]. 航空材料学报,2021,41(6):1-12. doi: 10.11868/j.issn.1005-5053.2021.000094

    WU B,WANG X M,XUAN M H,et al. Structural innovation of new fighter based on additive manufacturing[J]. Journal of Aeronautical Materials,2021,41(6):1-12. doi: 10.11868/j.issn.1005-5053.2021.000094
    [19] 杨胶溪,吴文亮,王长亮,等. 激光选区熔化技术在航空航天领域的发展现状及典型应用[J]. 航空材料学报,2021,41(2):1-15. doi: 10.11868/j.issn.1005-5053.2020.000158

    YANG J X,WU W L,WANG C L,et al. Development status and typical application of selective laser melting technology applications in aerospace field[J]. Journal of Aeronautical Materials,2021,41(2):1-15. doi: 10.11868/j.issn.1005-5053.2020.000158
    [20] 王迪,钱泽宇,窦文豪,等. 激光选区熔化成形高温镍基合金研究进展[J]. 航空制造技术,2018,61(10):49-60,67.

    WANG D,QIAN Z Y,DOU W H,et al. Research progress on selective laser melting of nickel based superalloy[J]. Aeronautical Manufacturing Technology,2018,61(10):49-60,67.
    [21] 刘小辉,刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程,2022,50(8):1-16. doi: 10.11868/j.issn.1001-4381.2022.000160

    LIU X H,LIU Y Z. Research status of crack inhibition via grain refinement of high-strength aluminum alloys fabricated by selective laser melting[J]. Journal of Materials Engineering,2022,50(8):1-16. doi: 10.11868/j.issn.1001-4381.2022.000160
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  55
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 修回日期:  2023-01-06
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回