Development and roadmap of laser additive manufacturing technology for aviation equipment
-
摘要: 激光增材制造支持结构设计创新、快速研制和验证,是当前航空装备领域最具代表性的增材制造方法,其中激光选区熔化主要应用于复杂精密功能结构的精确近净成形制造,激光直接沉积主要用于大尺寸复杂承载结构的制造。为支撑航空领域增材制造技术发展的战略布局,本文对激光增材制造现状和发展趋势进行梳理,指出增材制造发展重点必然会转向产品的冶金质量、力学性能及其稳定性控制方面,增材制造设备的在线监测、参数自整定控制等智能化功能的研究开发正成为设备的研发热点,基于损伤失效分析、寿命预测研究的增材制件力学行为研究以及基于元件、特征结构的性能考核验证技术,开始引起工程应用部门的关注。在对技术发展趋势分析的基础上,提出2035年航空领域激光增材制造技术发展目标和相应的政策和环境支撑、保障需求,并给出2035年技术发展路线图建议。Abstract: As the most representative additive manufacturing method in the field of aviation equipment at present, the laser additive manufacturing supports the structure design innovation, rapid development and verification. Among them, selective laser melting is mainly used for precision near net shape manufacturing of complex precise functional structures, and laser direct metal deposition is mainly used for manufacturing large and complex load-bearing structures. In order to support the strategic layout of the development of additive manufacturing technology in the aviation field, this paper sorts the current situation and development trend of laser additive manufacturing, and points out that the focus of additive manufacturing development is bound to turn to the metallurgical quality, mechanical properties and their stability control of products. The research and development of intelligent functions such as online monitoring, parameter self-tuning control of additive manufacturing equipment are becoming a research hotspot. Either the research on mechanical behavior of additive parts based on damage failure analysis and life prediction or the performance evaluation and verification technology based on components and characteristic structures have begun to attract the attention of engineering application departments. Based on the analysis of the technology development trend, the development goal of laser additive manufacturing technology in the aviation field in 2035 and the corresponding policy and environmental support and guarantee needs are proposed, and the technical development roadmap in 2035 is put forward. In 2025-2035, the control technology of microstructure, property and deformation for additive manufacturing of ordinary metal, intermetalliccompound, Nb-Si and ceramic based material is to be made a comprehensive breakthrough, the performance verification is to be basically completed, the functional assessment has been partially completed, and some products are to be entered mass production. Important load-bearing structures of aircraft and rotating parts of aeroengine made by additive manufacturing are to be widely used.
-
Key words:
- laser additive manufacturing /
- metal materials /
- aircraft /
- aeroengine /
- development roadmap
-
表 1 国际商业化SLM装备指标参考
Table 1. Index reference of international commercialized SLM equipments
Manufactor Equipment Energy
source/WBuild
dimension/
mm3Powder
spreading brushLayer
thickness/
μmOptical
systemFocus spot
diameter/
μmMaximum
scanning
speed/
(m·s−1)Forming
environmentEOS M 290 400 250×250×325 Compression type 20-100 F-θ focus mirror+scanning galvanometer 100 7 Preheating+inert atmosphere chamber EOS M 400 1000 400×400×400 Compression type 30-60 F-θ focus mirror+scanning galvanometer 60-300 7 No preheating +inert atmosphere chamber Realizer SLM 300 200/
400300×300×300 Flexible 20-100 F-θ focus mirror+scanning galvanometer 70-200 5 No preheating +inert atmosphere chamber Concept laser X line 1000R 1000 630×400×500 Compression type 30-200 F-θ focus mirror+CNC laser head movement 100-500 7 Preheating+inert atmosphere chamber SLM solution SLM 500HL 2×1000 500×280×325 Compression type 20-200 F-θ focus mirror+scanning galvanometer 80-150 15 No preheating +inert atmosphere chamber 3D Systems sPro250 200 250×250×300 Flexible 50-200 F-θ focus mirror+scanning galvanometer 50-150 7 No preheating +inert atmosphere chamber Renishaw PLC Am250 200
400250×250×301 Compression type 30-100 F-θ focus mirror+scanning galvanometer 70-100 5 No preheating +inert atmosphere chamber Phenix systems PXL 200 250×250×302 Flexible 20-50 F-θ focus mirror+scanning galvanometer 50-100 7 No preheating +inert atmosphere chamber 表 2 2035年航空领域激光增材制造技术发展路线图
Table 2. Development roadmap of laser additive manufacturing technology in aviation field to 2035
重点方向Key directions 2025年
20252030年
20302035年
20351:复杂结构激光选区熔化增材制造
2:承力结构激光直接沉积增材制造
3:耐高温新型材料增材制造
1: Selective laser melting of complex structures
2: Laser direct metal deposition of load-bearing structures
3: Additive manufactur-
ing of high temperature resistant new material技术:普通金属增材制造的组织-性能-变形控制技术全面突破,性能验证基本完成,功能考核部分完成,部分产品进入量产。金属间化合物增材制造物理冶金原理得到揭示。
应用:增材制造的航空飞机次承力结构和发动机静止零部件得到大量应用。
Technology: The control technology of microstructure, property and deformation for additive manufacturing of ordinary metal has made a comprehensive breakthrough, the performance verification has been basically completed, the functional assessment has been partially completed, and some products have entered mass production. The physical metallurgy principle of intermetallic compound additive manufacturing has been revealed.
Application: The secondary load-bearing structures of aircraft and static engine parts made by additive manufacturing have been widely used.技术:普通金属增材制造全面量产应用。金属间化合物增材制造的组织-性能-变形控制技术全面突破,性能验证基本完成,功能考核部分完成,部分产品进入量产。铌-硅、陶瓷基材料增材制造物理冶金原理得到揭示。
应用:增材制造的航空飞机重要承力结构和发动机旋转零部件得到大量应用。
Technology: Additive manufacturing of general metal is fully used in mass production. The control technology of microstructure, property and deformation for additive manufacturing of intermetallic compound has made a comprehensive breakthrough, the performance verification has been basically completed, the functional assessment has been partially completed, and some products have entered mass production. The physical metallurgy principle of additive manufacturing in Nb-Si and ceramic matrix material has been revealed.
Application: The important load-bearing structures and engine rotating parts of aircraft made by additive manufacturing have been widely used.技术:金属间化合物增材产品完成性能验证、功能考核、定型,进入全面批量应用。铌-硅、陶瓷基材料增材制造的组织-性能-变形控制技术全面突破,性能验证、功能考核部分完成,部分产品开始进入应用。
应用:增材制造的航空新材料、新结构零部件得到应用。
Technology: The performance verification, functional assessment and finalization of additive manufactured intermetallic compound products have been completed, and products related have entered into full batch application. The control technology of microstructure, property and deformation for additive manufacturing of Nb-Si and ceramic based material additive manufacturing has made a comprehensive breakthrough. The performance verification and functional assessment of these materials have been partially completed, and some products have begun to be applied.
Application: New aeronautical materials and new structural parts made by additive manufacturing are applied. -
[1] 田宗军,顾冬冬,沈理达,等. 激光增材制造技术在航空航天领域的应用与发展[J]. 航空制造技术,2015,58(11):41-45.TIAN Z J,GU D D,SHEN L D,et al. Application and development of laser additive manufacturing technology in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology,2015,58(11):41-45. [2] 林鑫,黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展,2015,34(9):684-688. doi: 10.7502/j.issn.1674-3962.2015.09.06LIN X,HUANG W D. High performance metal additive manufacturing technology applied in aviation field[J]. Materials China,2015,34(9):684-688. doi: 10.7502/j.issn.1674-3962.2015.09.06 [3] 闫雪,阮雪茜. 增材制造技术在航空发动机中的应用及发展[J]. 航空制造技术,2016,59(21):70-75.YAN X,RUAN X Q. Application and development of additive manufacturing technology in aeroengine[J]. Aeronautical Manufacturing Technology,2016,59(21):70-75. [4] 熊华平, 郭绍庆, 刘伟, 等. 航空金属材料增材制造技术[M]. 北京: 航空工业出版社, 2019. [5] NIKOLAY K T,SERGEI E M,IGOR A Y,et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal,2004(10):78-87. [6] MEIER H,HABERLAND C. Experimental studies on selective laser melting of metallic parts[J]. Materialwissenschaft und Werkstofftechnik,2008,39(9):665-670. doi: 10.1002/mawe.200800327 [7] CHILDS T H C,HAUSER C,BADROSSAMAY M. Mapping and modeling single scan track formation in direct metal selective laser melting[J]. Cirp Annals-Manufacturing Technology,2004,53(1):191-194. doi: 10.1016/S0007-8506(07)60676-3 [8] 陈玮,李志强. 航空钛合金增材制造的机遇和挑战[J]. 航空制造技术,2018,61(10):30-37.CHEN W,LI Z Q. Additive manufacturing of aerospace titanium alloys: opportunities and challenges[J]. Aeronautical Manufacturing Technology,2018,61(10):30-37. [9] GRIFFITH M L,SCHLIENGER M E,HARWELL L D,et al. Understanding thermal behavior in the LENS process[J]. Materials & Design,1999,20(2):107-113. [10] GUNATNNA M,HENYR S,CLETON F,et al. Epitaxial laser metal forming: analysis of microstructure formation[J]. Materials Science & Engineering:A,1999,271(1/2):232-241. [11] GÄUMANN M,BEZENCON C,CANALIS P,et al. Single-crystal laser deposition of superalloys: processing-microstructure maps[J]. Acta Materialia,2001,49(6):1051-1062. doi: 10.1016/S1359-6454(00)00367-0 [12] LIU C M,TIAN X J,TANG H B,et al. Obtaining bimodal microstructure in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Materials Science & Engineering:A,2014,609:177-184. [13] 杨强,鲁中良,黄福享,等. 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术,2016,59(12):26-31.YANG Q,LU Z L,HUANG F X,et al. Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology,2016,59(12):26-31. [14] LI N,HUANG S,ZHANG G D,et a1. Progress in additive manufacturing on new materials: a review[J]. Journal of Materials Science & Technology,2019,35:242-269. [15] 王华明. 高性能金属构件增材制造技术开启国防制造新篇章[J]. 国防制造技术,2013(3):5-7.Wang H M. Additive manufacturing of high-performance metallic structures opens a new page of manufacturing for the national defense industry[J]. Defense Manufacturing Technology,2013(3):5-7. [16] GU D D, SHI X Y, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science 2021, 372, eabg1487. [17] 姚喆赫,姚建华,向巧. 激光再制造技术与应用发展研究[J]. 中国工程科学,2020,22(3):63-70.YAO Z H,YAO J H,XIANG Q. Development of laser remanufacturing technology and application[J]. Strategic Study of CAE,2020,22(3):63-70. [18] 吴斌,王向明,玄明昊,等. 基于增材制造的新型战机结构创新[J]. 航空材料学报,2021,41(6):1-12. doi: 10.11868/j.issn.1005-5053.2021.000094WU B,WANG X M,XUAN M H,et al. Structural innovation of new fighter based on additive manufacturing[J]. Journal of Aeronautical Materials,2021,41(6):1-12. doi: 10.11868/j.issn.1005-5053.2021.000094 [19] 杨胶溪,吴文亮,王长亮,等. 激光选区熔化技术在航空航天领域的发展现状及典型应用[J]. 航空材料学报,2021,41(2):1-15. doi: 10.11868/j.issn.1005-5053.2020.000158YANG J X,WU W L,WANG C L,et al. Development status and typical application of selective laser melting technology applications in aerospace field[J]. Journal of Aeronautical Materials,2021,41(2):1-15. doi: 10.11868/j.issn.1005-5053.2020.000158 [20] 王迪,钱泽宇,窦文豪,等. 激光选区熔化成形高温镍基合金研究进展[J]. 航空制造技术,2018,61(10):49-60,67.WANG D,QIAN Z Y,DOU W H,et al. Research progress on selective laser melting of nickel based superalloy[J]. Aeronautical Manufacturing Technology,2018,61(10):49-60,67. [21] 刘小辉,刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程,2022,50(8):1-16. doi: 10.11868/j.issn.1001-4381.2022.000160LIU X H,LIU Y Z. Research status of crack inhibition via grain refinement of high-strength aluminum alloys fabricated by selective laser melting[J]. Journal of Materials Engineering,2022,50(8):1-16. doi: 10.11868/j.issn.1001-4381.2022.000160 -