一种无机盐铝涂层涂覆镍基粉末高温合金的高温氧化组织分析

李佳琳 杨杰 穆春辉 姜国杰 刘光旭 王晓峰 邹金文

李佳琳, 杨杰, 穆春辉, 姜国杰, 刘光旭, 王晓峰, 邹金文. 一种无机盐铝涂层涂覆镍基粉末高温合金的高温氧化组织分析[J]. 航空材料学报, 2023, 43(5): 67-75. doi: 10.11868/j.issn.1005-5053.2023.000003
引用本文: 李佳琳, 杨杰, 穆春辉, 姜国杰, 刘光旭, 王晓峰, 邹金文. 一种无机盐铝涂层涂覆镍基粉末高温合金的高温氧化组织分析[J]. 航空材料学报, 2023, 43(5): 67-75. doi: 10.11868/j.issn.1005-5053.2023.000003
LI Jialin, YANG Jie, MU Chunhui, JIANG Guojie, LIU Guangxu, WANG Xiaofeng, ZOU Jinwen. High temperature oxidation microstructure analysis of Ni-based P/M superalloy coated with an inorganic aluminum coating[J]. Journal of Aeronautical Materials, 2023, 43(5): 67-75. doi: 10.11868/j.issn.1005-5053.2023.000003
Citation: LI Jialin, YANG Jie, MU Chunhui, JIANG Guojie, LIU Guangxu, WANG Xiaofeng, ZOU Jinwen. High temperature oxidation microstructure analysis of Ni-based P/M superalloy coated with an inorganic aluminum coating[J]. Journal of Aeronautical Materials, 2023, 43(5): 67-75. doi: 10.11868/j.issn.1005-5053.2023.000003

一种无机盐铝涂层涂覆镍基粉末高温合金的高温氧化组织分析

doi: 10.11868/j.issn.1005-5053.2023.000003
基金项目: 国防科技重点实验室基金项目(JCKYS2020213001)
详细信息
    通讯作者:

    杨杰(1977—),女,博士,高级工程师,主要从事粉末冶金相关研究,联系地址:北京市81信箱1分信箱(邮编100095),E-mail: yangjient@163.com

  • 中图分类号: TG146.1+5

High temperature oxidation microstructure analysis of Ni-based P/M superalloy coated with an inorganic aluminum coating

  • 摘要: 使用TWL12+TWL20无机盐铝涂层喷涂于镍基粉末高温合金表面,采用XRD、SEM、EPMA和TEM研究无机盐铝涂层与粉末高温合金经700、750、800 ℃高温氧化后的组织变化。结果表明:高温氧化后涂层表层结构出现剥落,涂层中的铝与基体合金发生扩散,形成由氧化区、扩散区、互扩散区组成的过渡层,其中氧化区为最外层,该区域主要富集O、Al元素,形成Al2O3层;随之的扩散区主要含有Ni、Al元素,形成NiAl相及在其中弥散分布的α-Cr相;最后是富集Ti、Cr、Co、Ta等元素的互扩散区,存在于扩散区与基体之间,主要由Ni2AlTi相基体及在其中弥散分布的σ相组成;分析表明过渡层厚度随着氧化温度升高而变化,主要表现为互扩散区宽度增加,扩散区中的α-Cr相与互扩散区的σ相尺寸增大,且σ相沿垂直过渡区方向生长的趋势加剧;氧化增重曲线表明,涂层表层结构脱落后,过渡层在750、800 ℃高温氧化过程中表现出良好的抗氧化性能,说明TWL12+TWL20无机盐铝涂层具有为航空发动机用先进粉末高温合金提供高温氧化涂层保护的潜力。

     

  • 图  1  试样示意图

    Figure  1.  Schematic diagram of sample

    图  2  无机盐铝涂层表面形貌和截面形貌 (a)涂层表面形貌;(b)涂层截面形貌

    Figure  2.  Surface morphology and cross section morphology of inorganic aluminum coating  (a)coating surface morphology;(b)coating cross section morphology

    图  3  无机盐铝涂层部分元素EDS面分布

    Figure  3.  EDS mapping of the inorganic aluminum coating

    图  4  大气环境中涂层在不同温度下高温氧化100 h后的表面形貌 (a)700 ℃;(b)750 ℃;(c)800 ℃

    Figure  4.  Surface morphologies of coatings in air environment after 100 h oxidation  (a)700 ℃;(b)750 ℃;(c)800 ℃

    图  5  涂层高温氧化后表面XRD图

    Figure  5.  XRD patterns of the coating surface after high temperature oxidation

    图  6  大气环境中涂层在700 ℃下高温氧化100 h试样截面分析 (a)截面形貌;(b)EPMA元素分布;(c)图(a)中a1位置高倍形貌;(d)图(a)中a2位置高倍形貌

    Figure  6.  Cross section analysis of coating samples oxidized at 700 ℃ for 100h in air  (a)cross section morphology;(b)EPMA element distribution;(c)high power morphology of a1 position in Fig.(a);(d)high power morphology of a2 position in Fig.(a)

    图  7  扩散区和互扩散区区域的微区TEM分析 (a)扩散区微区的HADDF;(b)扩散区微区的EDS元素点分析;(c)互扩散区微区的HADDF;(d)互扩散区微区的EDS面分布

    Figure  7.  TEM analysis of diffusion layer and interdiffusion zone  (a)HADDF of diffusion layer;(b)EDS element analysis of diffusion layer;(c)HADDF of interdiffusion zone;(d)EDS mapping of interdiffusion zone

    图  8  大气环境中涂层在750 ℃下高温氧化100 h试样截面形貌 (a)截面形貌;(b)EPMA元素分布;(c)图(a)中a1位置高倍形貌;(d)图(a)中a2位置高倍形貌

    Figure  8.  Cross section analysis of coating samples oxidized at 750 ℃ for 100 h in air  (a)cross section morphology;(b)EPMA element distribution;(c)high power morphology of a1 position in Fig(a);(d)high power morphology of a2 position in Fig(a)

    图  9  大气环境中涂层在800 ℃下高温氧化100 h试样截面形貌 (a)截面形貌;(b)EPMA元素分布;(c)图(a)中a1位置高倍形貌;(d)图(a)中a2位置高倍形貌

    Figure  9.  Cross section analysis of coating samples oxidized at 800 ℃ for 100 h in air  (a)cross section morphology;(b)EPMA element distribution;(c)high power morphology of a1 position in Fig(a);(d)high power morphology of a2 position in Fig(a)

    图  10  高温氧化过程中涂层与基体的反应机理

    Figure  10.  Reaction mechanism between coating and substrate during high temperature oxidation

    图  11  750 ℃和800 ℃高温氧化增重曲线

    Figure  11.  Oxidation weight gain curves at 750 ℃ and 800 ℃

    表  1  镍基粉末高温合金主要成分(质量分数/%)

    Table  1.   Composition of a Ni-based P/M superalloy(mass fraction/%)

    Cr Al Ti Co W Mo Nb Ta Other Ni
    16-21 3-5 2-3 10-13 2-4 2-4 1-2 2-3 <0.5 Bal
    下载: 导出CSV
  • [1] 张国庆,张义文,郑亮,等. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报,2019,55(9):1133-1144. doi: 10.11900/0412.1961.2019.00119

    ZHANG G Q,ZHANG Y W,ZHENG L,et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application[J]. Acta Metallurgica Sinica,2019,55(9):1133-1144. doi: 10.11900/0412.1961.2019.00119
    [2] KHANNA A S. High-temperature oxidation[M]//KUTZ M. Handbook of Environmental Degradation of Materials (Third Edition). [S. l. ]:William Andrew Publishing,2018:117-132.
    [3] BACHE M R,JONES J P,DREW G L,et al. Environment and time dependent effects on the fatigue response of an advanced nickel based superalloy[J]. International Journal of Fatigue,2009,31(11):1719-1723.
    [4] XU C,YAO Z H,DONG JX,et al. Mechanism of high-temperature oxidation effects in fatigue crack propagation and fracture mode for FGH97 superalloy[J]. Rare Metals,2019,38(7):642-652. doi: 10.1007/s12598-018-1123-x
    [5] MISRA A K,GREENBAUER-SENG L A. Aerospace propulsion and power materials and structures research at NASA Glenn Research Center[J]. Journal of Aerospace Engineering,2013,26(2):459-490. doi: 10.1061/(ASCE)AS.1943-5525.0000325
    [6] 张光业,张华,张厚安,等. 航空用高温合金防护涂层的研制及其应用的新进展[J]. 材料导报,2006,20(5):59-62.

    ZHANG G Y,ZHANG H,ZHAGN H A,et al. Progress in preparation and application of corrosive resistance coating for Aerospace superalloys[J]. Materials Review,2006,20(5):59-62.
    [7] TEXIER D,MONCEAU D,CARBOS F,et al. Tensile properties of a non-line-of-sight processed β-γ-γ′ MCrAlY coating at high temperature [J]. Surface and Coatings Technology,2017,326:28-36. doi: 10.1016/j.surfcoat.2017.07.026
    [8] 史学海,陈志宇,周斌,等. 无机磷酸盐耐高温涂料的防腐机理及研究进展[J]. 电镀与涂饰,2021,40(14):1110-1118.

    SHI X H,CHEN Z Y,ZHOU B,et al. Anticorrosion mechanism and research progress of high-temperature-resistant inorganic phosphate coatings[J]. Electroplating and Finishing,2021,40(14):1110-1118.
    [9] 杨宏波,刘朝辉,丁逸栋,等. 金属表面耐高温防腐涂料的研究进展[J]. 表面技术,2017,46(3):216-222.

    YANG H B,LIU Z H,DING Y D,et al. Research progress of high temperature resistant anticorrosive coatings on metal surface[J]. Surface Technology,2017,46(3):216-222.
    [10] 王巍,权崇仁. 某型燃机中温部件防护涂层性能研究[J]. 汽轮机技术,2014,56(6):475-477. doi: 10.3969/j.issn.1001-5884.2014.06.023

    WANG W,QUAN C R. Research of performances protective coating in a gas turbine[J]. Turbine Technology,2014,56(6):475-477. doi: 10.3969/j.issn.1001-5884.2014.06.023
    [11] 费瑞梅,冯自修,郝杉杉,等. 高强度钢TEL-11涂层工艺的研究[J]. 材料工程,1994(4):29-32.

    FEI R M,FONG Z X,HAO S S,et al. Study on process TWL-11 coating system for high strength steel[J]. Journal of Materials Engineering,1994(4):29-32.
    [12] 张鹏飞,杨瑞,原玲,等. 无机盐铝涂料及其性能研究[J]. 涂料工业,2013,43(8):69-73. doi: 10.3969/j.issn.0253-4312.2013.08.014

    ZHANG P F,YANG R,YUAN L,et al. Study on properties of inorganic aluminum coating[J]. Paint and Coatings Industry,2013,43(8):69-73. doi: 10.3969/j.issn.0253-4312.2013.08.014
    [13] PEDRAZA F,MOLLARD M,RANNOU B,et al. Oxidation resistance of thermal barrier coatings based on hollow alumina particles[J]. Oxidation of Metals,2016,85(3):231-244.
    [14] GOWARD G W. Current research on the surface protection of superalloys for gas turbine engines[J]. JOM,1970,22(10):31-39. doi: 10.1007/BF03355665
    [15] MONTERO X,GALETZ M C,SCHüTZE M. Low-activity aluminide coatings for superalloys using a slurry process free of halide activators and chromates [J]. Surface and Coatings Technology,2013,222:9-14. doi: 10.1016/j.surfcoat.2013.01.033
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  3
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10
  • 修回日期:  2023-05-12
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。