Low cycle fatigue properties and fatigue mechanism of DD6 single crystal superalloy under asymmetrical cyclic loading
-
摘要: 研究DD6单晶高温合金在700 ℃、R=0.05条件下的低周疲劳性能,采用扫描电镜观察断口形貌和断裂组织,分析疲劳裂纹萌生、扩展及断裂机制。结果表明:随着应变幅增加,合金的低周疲劳寿命降低,合金在非对称循环载荷条件下具有良好的低周疲劳性能,不存在过渡寿命,低周疲劳过程中弹性应变起主要作用,塑性变形量极小。随着总应变幅的增加,塑性变形损伤增加;疲劳断口由疲劳源区、裂纹扩展区和瞬断区三部分组成,所有试样断裂机制均为类解理断裂。疲劳裂纹萌生于试样的表面、亚表面或远离表面的显微孔洞,远离表面起裂断口呈现“鱼眼”特征。裂纹先沿与主应力轴垂直方向扩展,然后沿{111}平面扩展,裂纹扩展区有典型的疲劳条带、解理台阶、河流状花样特征,瞬断区有解理平面、滑移带、撕裂棱特征;断裂组织分析表明远离断口处γ′相仍保持立方状形态,断口附近的γ′相发生了塑性变形,断口附近可见滑移带,二次裂纹沿滑移带形成。Abstract: The low cycle fatigue(LCF) properties of DD6 single crystal superalloy were investigated at 700 ℃ and R of 0.05. SEM was used to study the fracture surface and fracture microstructure. The results show that the LCF life of the alloy decreases with the increase of strain amplitude. LCF properties of the alloy are excellent under asymmetrical cyclic loading. The alloy has no transition fatigue life during LCF tests at all total strain amplitudes. LCF fatigue damage can be dominantly contributed to elastic damage and the plastic deformation is very minimal. The plastic damage increases with the increase of total strain amplitude. The crack initiation site, the fatigue crack propagation area and the final fracture zone can be observed in the fracture surface and all specimens is similar to quasi-cleavage fracture. The fatigue cracks are initiated from the micro-pores on the surface, sub-surface or far from the surface. Far from the surface crack fractures have fish-eye feature. The fatigue crack propagates perpendicularly to main stress at first and then along {111} plane. Typical fatigue striation, cleavage steps and river pattern characteristic are formed on fatigue crack propagation zone. The cleavage plane, slip band and tearing ridge are seen in the final fracture zone. Fracture microstructure analysis shows that the γ′ phase morphology far from the fracture surface still maintains cubic shape, and the slip bands are visible seen near the fracture surface, and secondary cracks are formed along slip bands.
-
Key words:
- DD6 /
- single crystal superalloy /
- asymmetrical cyclic loading /
- low cycle fatigue /
- fracture mechanism
-
图 4 合金不同条件下的滞后环 (a)Δεt/2=1.1%, Nf=10171, 半衰期循环;(b)Δεt/2=1.1%, Nf=10171, 最后一个循环;(c)Δεt/2=1.6%, Nf=924, 半衰期循环;(d)Δεt/2=1.6%, Nf=924, 最后一个循环;(e)Δεt/2=1.9%, Nf=349, 半衰期循环;(f)Δεt/2=1.9%, Nf=349, 最后一个循环
Figure 4. Typical hysteresis loops of the alloy at different conditions (a)Δεt/2=1.1%, Nf=10171, half-life cycle;(b)Δεt/2=1.1%, Nf=10171, last cycle;(c)Δεt/2=1.6%, Nf=924, half-life cycle;(d)Δεt/2=1.6%, Nf=924, last cycle;(e)Δεt/2=1.9%, Nf=349, half-life cycle;(f)Δεt/2=1.9%, Nf=349, last cycle
表 1 DD6合金的名义成分(质量分数/%)
Table 1. Nominal chemical compositions of DD6 alloy(mass fraction/%)
Co Re Nb Mo Cr W Ta Al Hf C Ni 9 2 0.5 2 4.3 8 7.5 5.6 0.1 0.006 Bal 表 2 DD6合金非对称循环载荷下的低周疲劳参数
Table 2. Low cycle fatigue parameters of DD6 alloy under asymmetrical cyclic loading
E/GPa σf'E/% σf'/MPa b εf'/% c 109.4 2.224 2433.1 –0.143 0.164 –0.425 -
[1] CARON P,KHAN T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerospace Science Technology,1999,3:513-523. doi: 10.1016/S1270-9638(99)00108-X [2] LI J R,LIU S Z,WANG X G,et al. Development of a low-cost third generation single crystal superalloy DD9[C]//Superalloys 2016,Pennsylvania,TMS,2016:57-63. [3] LI J R,ZHONG Z G,TANG D Z,et al. A low-cost second generation single crystal superalloy DD6 [C]// Superalloys 2000,Warrendale,TMS,2000:777-783. [4] LI J R,ZHAO J Q,LIU S Z,et al. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6 [C]// Superalloys 2008,Pennsylvania,TMS,2008:443-451. [5] 刘丽玉,高翔宇,杨宪锋,等. DD6 单晶高温合金振动疲劳性能及断裂机理[J]. 材料工程,2018,46(2):128-133.LIU L Y,GAO X Y,YANG X F,et al. Vibration fatigue properties and fracture mechanism of DD6 single crystal superalloy[J]. Journal of Materials Engineering,2018,46(2):128-133. [6] ZHOU H,RO Y,HARADA H,et al. Deformation microstructures after low-cycle fatigue in a fourth-generation Ni-base SC superalloy TMS-138[J]. Materials Science and Engineering:A,2004,381:20. doi: 10.1016/j.msea.2004.04.051 [7] LUKAS P,KUNZ L,SVOBODA M. High cycle fatigue of superalloy single crystals at high mean stress[J]. Materials Science and Engineering:A,2004,387/389:505. doi: 10.1016/j.msea.2004.01.093 [8] SHI Z X,LI J R,LIU S Z,et al. High cycle fatigue behavior of the second generation single crystal superalloy DD6[J]. Transactions of Nonferrous Metals Society of China,2011,21(5):998-1003. doi: 10.1016/S1003-6326(11)60812-1 [9] 李嘉荣,谢洪吉,韩梅,等. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报,2019,55(9):1195-1203.LI J R,XIE H J,HAN M,et al. High cycle fatigue behavior of second generation single crystal superalloy[J]. Acta Metallurgica Sinica,2019,55(9):1195-1203. [10] 董建民,李嘉荣,韩梅. 检验腐蚀对镍基单晶高温合金高周疲劳性能的影响[J]. 材料工程,2020,48(1):77-83.DONG J M,LI J R,HAN M. Effects of check corrosion on high cycle fatigue properties of nickel-base single crystal superalloy[J]. Journal of Materials Engineering,2020,48(1):77-83. [11] 韩梅,谢洪吉,李嘉荣,等. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程,2019,47(6):161-168.HAN M,XIE H J,LI J R,et al. Effect of recrystallization on axial high cycle fatigue properties of DD6 single crystal superalloy[J]. Journal of Materials Engineering,2019,47(6):161-168. [12] 张冬旭,何金洋,温志勋,等. 气膜孔倾角角度对单晶高温合金疲劳性能的影响[J]. 推进技术,2021,42(1):192-199.ZHANG D X,HE J Y,WEN Z X,et al. Effects of slant angle of film hole on fatigue properties of single crystal superalloy[J]. Journal of Propulsion Technology,2021,42(1):192-199. [13] 蒋康河,陈竞炜,荆甫雷,等. 镍基单晶高温合金DD6气膜孔热机械疲劳试验[J]. 航空动力学报,2019,34(5):980-986.JIANG K H,CHEN J W,JING F L,et al. Thermomechanical fatigue on the nickel based single crystal superalloy DD6 with film cooling hole[J]. Journal of Aerospace Power,2019,34(5):980-986. [14] 刘维维,唐定中,李嘉荣,等. 抽拉速率对DD6单晶高温合金650℃低周疲劳性能的影响[J]. 航空材料学报,2012,32(2):8-12. doi: 10.3969/j.issn.1005-5053.2012.2.002LIU W W,TANG D Z,LI J R,et al. Effects of withdrawing rate on low cycle fatigue properties of single crystal superalloy DD6 at 650 ℃[J]. Journal of Aeronautical Materials,2012,32(2):8-12. doi: 10.3969/j.issn.1005-5053.2012.2.002 [15] 李影,苏彬,吴学仁. 高温下取向对DD6 单晶高温合金低周疲劳性能的影响[J]. 航空材料学报,2001,21(2):22-25.LI Y,SU B,WU X R. Orientation dependence of low cycle fatigue life of single-crystal nickel-base superalloy DD6 under high temperature[J]. Journal of Aeronautical Materials,2001,21(2):22-25. [16] 罗辅欢,卿华,田洪宇,等. 一种考虑各向异性的DD6单晶高温合金低周疲劳寿命预测方法[J]. 燃气涡轮试验与研究,2019,32(6):14-16.LUO F H,QING H,TIAN H Y,et al. A method for predicting low cycle fatigue life of single-crystal high temperature alloy DD6 with anisotropy[J]. Gas Turbine Experiment and Research,2019,32(6):14-16. [17] 李影,于慧臣,张国栋,等. 高温下拉伸保载对DD6单晶合金低周疲劳行为的影响[J]. 燃气涡轮试验与研究,2005,18(1):14-16.LI Y,YU H C,ZHANG G D,et al. Effect of Tensile strain dwell on the low cycle fatigue behavior of DD6 Nickel-based single crystal superalloy at high temperature[J]. Gas Turbine Experiment and Research,2005,18(1):14-16. [18] 李影,苏彬. DD6单晶合金的高温低周疲劳机制[J]. 航空动力学报,2003,18(6):732-736.LI Y,SU B. Mechanisms of low cyclic fatigue of DD6 alloy at elevated temperature[J]. Journal of Aerospace Power,2003,18(6):732-736. [19] 丁智平,陈吉平,尹泽勇,等. 非对称循环载荷下镍基单晶合金低周疲劳寿命预测[J]. 航空材料学报,2006,26(4):6-9. doi: 10.3969/j.issn.1005-5053.2006.04.002DING Z P,CHEN J P,YIN Z Y,et al. Low cycle fatigue life prediction superalloys under asymmetric of single crystal Nickel-based asymmetrical cyclic loading[J]. Journal of Aeronautical Materials,2006,26(4):6-9. doi: 10.3969/j.issn.1005-5053.2006.04.002 [20] SURESH S. 材料的疲劳[M]. 北京:国防工业出版社,l993:l38-138.SURESH S. Fatigue of Materials[M]. Beijing:National Defence Industry Press,l993:l38-138. [21] WASSON A J,FUCHS G E. The effect of carbide morphologies on elevated temperature tensile and fatigue behavior of a modified single crystal Ni-base superalloy [C]//Superalloys 2008. Pennsylvania,PA:TMS,2008:489-497. [22] FRITZEMEIER LG. The influence of high thermal gradient casting,hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy [C]//Superalloys 1988. WARRENDALE,PA:TMS,1988:265-274. [23] 陈皎,程礼,焦胜博,等. TC4钛合金超高周疲劳性能研究[J]. 实验力学,2018,33(2):272-280. doi: 10.7520/1001-4888-16-226CHEN J,CHENG L,JIAO S B,et al. On the ultra-high cycle fatigue behavior of titanium alloy TC4[J]. Journal of experimental mechanics,2018,33(2):272-280. doi: 10.7520/1001-4888-16-226 [24] 余小斌. 电磁搅拌激光立体成形GH4169合金的组织和力学性能研究 [D]. 南昌:南昌航空大学,2015:42-43.YU X B. Microstructure and mechanical properties of GH4169 superalloy fabricated by electromagnetic stirring assisted laser solid forming [D]. Nanchang:Nanchang Hangkong University,2015:42-43. [25] 钟群鹏,赵子华. 断口学 [M]. 北京:高等教育出版社,2006:273-275.ZHONG Q P,ZHAO Z H. Fractography [M]. Beijing:Higher Education Press,2006:273-275. [26] 王莉,周忠娇,姜卫国,等. 第二取向对镍基单晶高温合金DD33热疲劳性能的影响[J]. 材料研究学报,2014,28(9):663-667. doi: 10.11901/1005.3093.2013.138WANG L,ZHOU Z J,JIANG W G,et al. Effect of secondary orientation on thermal fatigue behavior of a Nickel-base single crystal superalloy DD33[J]. Chinese Journal of Materials Research,2014,28(9):663-667. doi: 10.11901/1005.3093.2013.138 [27] 黄志伟,袁福河,王中光,等. 铸造镍基高温合金M963 的高温低周疲劳行为[J]. 金属学报,2007,43(7):678-682. doi: 10.3321/j.issn:0412-1961.2007.07.002HUANG Z W,YUAN F H,WANG Z G,et al. Low cycle fatigue behavior of a cast nickel base superalloy M963 at elevated temperature[J]. Acta Metallurgica Sinica,2007,43(7):678-682. doi: 10.3321/j.issn:0412-1961.2007.07.002 [28] ZHOU H,RO Y,HARADA H,et al. Deformation microstructures after low-cycle fatigue in a fourth-generation Ni-base SC superalloy TMS-138[J]. Materials Science and Engineering:A,2004,381:20-27. doi: 10.1016/j.msea.2004.04.051 [29] 郑运荣,谢济洲. Hf和凝固冷速对定向凝固高温合金低周疲劳性能的影响[J]. 航空材料学报,2009,29(6):1-6. doi: 10.3969/j.issn.1005-5053.2009.6.001ZHENG Y R,XIE J Z. Effect of Element Hf and cooling rate during solidification on low cycle fatigue properties of directionally solidified superalloys[J]. Journal of Aeronautical Materials,2009,29(6):1-6. doi: 10.3969/j.issn.1005-5053.2009.6.001 -