DD6单晶高温合金非对称循环载荷低周疲劳性能及断裂机制

李维 赵春玲 张鑫 王强 李璞 方向 彭文雅

李维, 赵春玲, 张鑫, 王强, 李璞, 方向, 彭文雅. DD6单晶高温合金非对称循环载荷低周疲劳性能及断裂机制[J]. 航空材料学报, 2023, 43(5): 58-66. doi: 10.11868/j.issn.1005-5053.2023.000010
引用本文: 李维, 赵春玲, 张鑫, 王强, 李璞, 方向, 彭文雅. DD6单晶高温合金非对称循环载荷低周疲劳性能及断裂机制[J]. 航空材料学报, 2023, 43(5): 58-66. doi: 10.11868/j.issn.1005-5053.2023.000010
LI Wei, ZHAO Chunling, ZHANG Xin, WANG Qiang, LI Pu, FANG Xiang, PENG Wenya. Low cycle fatigue properties and fatigue mechanism of DD6 single crystal superalloy under asymmetrical cyclic loading[J]. Journal of Aeronautical Materials, 2023, 43(5): 58-66. doi: 10.11868/j.issn.1005-5053.2023.000010
Citation: LI Wei, ZHAO Chunling, ZHANG Xin, WANG Qiang, LI Pu, FANG Xiang, PENG Wenya. Low cycle fatigue properties and fatigue mechanism of DD6 single crystal superalloy under asymmetrical cyclic loading[J]. Journal of Aeronautical Materials, 2023, 43(5): 58-66. doi: 10.11868/j.issn.1005-5053.2023.000010

DD6单晶高温合金非对称循环载荷低周疲劳性能及断裂机制

doi: 10.11868/j.issn.1005-5053.2023.000010
详细信息
    通讯作者:

    李璞(1995—),男,硕士,工程师,研究方向为航空发动机材料与工艺应用,联系地址:湖南省株洲市芦淞区董家塅608所老区(412000),E-mail:lp771597120@163.com

  • 中图分类号: TG132.3+2

Low cycle fatigue properties and fatigue mechanism of DD6 single crystal superalloy under asymmetrical cyclic loading

  • 摘要: 研究DD6单晶高温合金在700 ℃、R=0.05条件下的低周疲劳性能,采用扫描电镜观察断口形貌和断裂组织,分析疲劳裂纹萌生、扩展及断裂机制。结果表明:随着应变幅增加,合金的低周疲劳寿命降低,合金在非对称循环载荷条件下具有良好的低周疲劳性能,不存在过渡寿命,低周疲劳过程中弹性应变起主要作用,塑性变形量极小。随着总应变幅的增加,塑性变形损伤增加;疲劳断口由疲劳源区、裂纹扩展区和瞬断区三部分组成,所有试样断裂机制均为类解理断裂。疲劳裂纹萌生于试样的表面、亚表面或远离表面的显微孔洞,远离表面起裂断口呈现“鱼眼”特征。裂纹先沿与主应力轴垂直方向扩展,然后沿{111}平面扩展,裂纹扩展区有典型的疲劳条带、解理台阶、河流状花样特征,瞬断区有解理平面、滑移带、撕裂棱特征;断裂组织分析表明远离断口处γ′相仍保持立方状形态,断口附近的γ′相发生了塑性变形,断口附近可见滑移带,二次裂纹沿滑移带形成。

     

  • 图  1  低周疲劳试样尺寸

    Figure  1.  Schematic diagrams of specimens for LCF tests

    图  2  DD6合金的热处理组织

    Figure  2.  Heat treatment microstructure of DD6 alloy

    图  3  700 ℃时DD6合金疲劳寿命与应变幅的关系 (a)总应变幅;(b)弹性与塑性应变幅

    Figure  3.  Relationship between strain amplitude and fatigue life of DD6 alloy at 700 ℃ (a)total strain amplitude;(b)elastic and plastic strain amplitude

    图  4  合金不同条件下的滞后环 (a)Δεt/2=1.1%, Nf=10171, 半衰期循环;(b)Δεt/2=1.1%, Nf=10171, 最后一个循环;(c)Δεt/2=1.6%, Nf=924, 半衰期循环;(d)Δεt/2=1.6%, Nf=924, 最后一个循环;(e)Δεt/2=1.9%, Nf=349, 半衰期循环;(f)Δεt/2=1.9%, Nf=349, 最后一个循环

    Figure  4.  Typical hysteresis loops of the alloy at different conditions (a)Δεt/2=1.1%, Nf=10171, half-life cycle;(b)Δεt/2=1.1%, Nf=10171, last cycle;(c)Δεt/2=1.6%, Nf=924, half-life cycle;(d)Δεt/2=1.6%, Nf=924, last cycle;(e)Δεt/2=1.9%, Nf=349, half-life cycle;(f)Δεt/2=1.9%, Nf=349, last cycle

    图  5  疲劳断口整体形貌和源区形貌 (a)、(b)Δεt/2=1.3%, Nf=4554;(c)、(d)、(e)Δεt/2=1.6%, Nf=832;(f)、(g)、(h)Δεt/2=1.1%, Nf=18133

    Figure  5.  Overall morphology of fatigue fracture surface and crack initiation site (a),(b)Δεt/2=1.3%, Nf=4554;(c),(d),(e)Δεt/2=1.6%, Nf=832;(f),(g),(h)Δεt/2=1.1%, Nf=18133

    图  6  疲劳断口扩展区特征形貌 (a)Δεt/2=1.1%, Nf=9203;(b)Δεt/2=1.3%, Nf=4902;(c)Δεt/2=1.1%,Nf= 10171;(d)Δεt/2=1.6%,Nf=832

    Figure  6.  Characteristics of fatigue crack propagation zone (a)Δεt/2=1.1%, Nf=9203;(b)Δεt/2=1.3%, Nf=4902;(c)Δεt/2=1.1%, Nf= 10171;(d)Δεt/2=1.6%, Nf=832

    图  7  疲劳断口瞬断区特征形貌 (a)、(b)Δεt/2=1.6%,Nf=924;(c)Δεt/2=1.1%,Nf= 10171;(d)Δεt/2=1.1%,Nf=18133

    Figure  7.  Characteristics of the final fracture zone (a)、(b)Δεt/2=1.6%,Nf=924;(c)Δεt/2=1.1%,Nf= 10171;(d)Δεt/2=1.1%,Nf=18133

    图  8  疲劳断裂组织 (a)、(b)、(c)Δεt/2=1.1%, Nf=18133;(d)Δεt/2=1.6%, Nf=832;(e)、(f)Δεt/2=1.9%, Nf=288

    Figure  8.  Microstructue of specimen after fatigue fracture (a),(b),(c)Δεt/2=1.1%, Nf=18133;(d)Δεt/2=1.6%, Nf=832;(e),(f)Δεt/2=1.9%, Nf=288

    表  1  DD6合金的名义成分(质量分数/%)

    Table  1.   Nominal chemical compositions of DD6 alloy(mass fraction/%)

    Co Re Nb Mo Cr W Ta Al Hf C Ni
    9 2 0.5 2 4.3 8 7.5 5.6 0.1 0.006 Bal
    下载: 导出CSV

    表  2  DD6合金非对称循环载荷下的低周疲劳参数

    Table  2.   Low cycle fatigue parameters of DD6 alloy under asymmetrical cyclic loading

    E/GPa σf'E/% σf'/MPa b εf'/% c
    109.4 2.224 2433.1 –0.143 0.164 –0.425
    下载: 导出CSV
  • [1] CARON P,KHAN T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerospace Science Technology,1999,3:513-523. doi: 10.1016/S1270-9638(99)00108-X
    [2] LI J R,LIU S Z,WANG X G,et al. Development of a low-cost third generation single crystal superalloy DD9[C]//Superalloys 2016,Pennsylvania,TMS,2016:57-63.
    [3] LI J R,ZHONG Z G,TANG D Z,et al. A low-cost second generation single crystal superalloy DD6 [C]// Superalloys 2000,Warrendale,TMS,2000:777-783.
    [4] LI J R,ZHAO J Q,LIU S Z,et al. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6 [C]// Superalloys 2008,Pennsylvania,TMS,2008:443-451.
    [5] 刘丽玉,高翔宇,杨宪锋,等. DD6 单晶高温合金振动疲劳性能及断裂机理[J]. 材料工程,2018,46(2):128-133.

    LIU L Y,GAO X Y,YANG X F,et al. Vibration fatigue properties and fracture mechanism of DD6 single crystal superalloy[J]. Journal of Materials Engineering,2018,46(2):128-133.
    [6] ZHOU H,RO Y,HARADA H,et al. Deformation microstructures after low-cycle fatigue in a fourth-generation Ni-base SC superalloy TMS-138[J]. Materials Science and Engineering:A,2004,381:20. doi: 10.1016/j.msea.2004.04.051
    [7] LUKAS P,KUNZ L,SVOBODA M. High cycle fatigue of superalloy single crystals at high mean stress[J]. Materials Science and Engineering:A,2004,387/389:505. doi: 10.1016/j.msea.2004.01.093
    [8] SHI Z X,LI J R,LIU S Z,et al. High cycle fatigue behavior of the second generation single crystal superalloy DD6[J]. Transactions of Nonferrous Metals Society of China,2011,21(5):998-1003. doi: 10.1016/S1003-6326(11)60812-1
    [9] 李嘉荣,谢洪吉,韩梅,等. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报,2019,55(9):1195-1203.

    LI J R,XIE H J,HAN M,et al. High cycle fatigue behavior of second generation single crystal superalloy[J]. Acta Metallurgica Sinica,2019,55(9):1195-1203.
    [10] 董建民,李嘉荣,韩梅. 检验腐蚀对镍基单晶高温合金高周疲劳性能的影响[J]. 材料工程,2020,48(1):77-83.

    DONG J M,LI J R,HAN M. Effects of check corrosion on high cycle fatigue properties of nickel-base single crystal superalloy[J]. Journal of Materials Engineering,2020,48(1):77-83.
    [11] 韩梅,谢洪吉,李嘉荣,等. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程,2019,47(6):161-168.

    HAN M,XIE H J,LI J R,et al. Effect of recrystallization on axial high cycle fatigue properties of DD6 single crystal superalloy[J]. Journal of Materials Engineering,2019,47(6):161-168.
    [12] 张冬旭,何金洋,温志勋,等. 气膜孔倾角角度对单晶高温合金疲劳性能的影响[J]. 推进技术,2021,42(1):192-199.

    ZHANG D X,HE J Y,WEN Z X,et al. Effects of slant angle of film hole on fatigue properties of single crystal superalloy[J]. Journal of Propulsion Technology,2021,42(1):192-199.
    [13] 蒋康河,陈竞炜,荆甫雷,等. 镍基单晶高温合金DD6气膜孔热机械疲劳试验[J]. 航空动力学报,2019,34(5):980-986.

    JIANG K H,CHEN J W,JING F L,et al. Thermomechanical fatigue on the nickel based single crystal superalloy DD6 with film cooling hole[J]. Journal of Aerospace Power,2019,34(5):980-986.
    [14] 刘维维,唐定中,李嘉荣,等. 抽拉速率对DD6单晶高温合金650℃低周疲劳性能的影响[J]. 航空材料学报,2012,32(2):8-12. doi: 10.3969/j.issn.1005-5053.2012.2.002

    LIU W W,TANG D Z,LI J R,et al. Effects of withdrawing rate on low cycle fatigue properties of single crystal superalloy DD6 at 650 ℃[J]. Journal of Aeronautical Materials,2012,32(2):8-12. doi: 10.3969/j.issn.1005-5053.2012.2.002
    [15] 李影,苏彬,吴学仁. 高温下取向对DD6 单晶高温合金低周疲劳性能的影响[J]. 航空材料学报,2001,21(2):22-25.

    LI Y,SU B,WU X R. Orientation dependence of low cycle fatigue life of single-crystal nickel-base superalloy DD6 under high temperature[J]. Journal of Aeronautical Materials,2001,21(2):22-25.
    [16] 罗辅欢,卿华,田洪宇,等. 一种考虑各向异性的DD6单晶高温合金低周疲劳寿命预测方法[J]. 燃气涡轮试验与研究,2019,32(6):14-16.

    LUO F H,QING H,TIAN H Y,et al. A method for predicting low cycle fatigue life of single-crystal high temperature alloy DD6 with anisotropy[J]. Gas Turbine Experiment and Research,2019,32(6):14-16.
    [17] 李影,于慧臣,张国栋,等. 高温下拉伸保载对DD6单晶合金低周疲劳行为的影响[J]. 燃气涡轮试验与研究,2005,18(1):14-16.

    LI Y,YU H C,ZHANG G D,et al. Effect of Tensile strain dwell on the low cycle fatigue behavior of DD6 Nickel-based single crystal superalloy at high temperature[J]. Gas Turbine Experiment and Research,2005,18(1):14-16.
    [18] 李影,苏彬. DD6单晶合金的高温低周疲劳机制[J]. 航空动力学报,2003,18(6):732-736.

    LI Y,SU B. Mechanisms of low cyclic fatigue of DD6 alloy at elevated temperature[J]. Journal of Aerospace Power,2003,18(6):732-736.
    [19] 丁智平,陈吉平,尹泽勇,等. 非对称循环载荷下镍基单晶合金低周疲劳寿命预测[J]. 航空材料学报,2006,26(4):6-9. doi: 10.3969/j.issn.1005-5053.2006.04.002

    DING Z P,CHEN J P,YIN Z Y,et al. Low cycle fatigue life prediction superalloys under asymmetric of single crystal Nickel-based asymmetrical cyclic loading[J]. Journal of Aeronautical Materials,2006,26(4):6-9. doi: 10.3969/j.issn.1005-5053.2006.04.002
    [20] SURESH S. 材料的疲劳[M]. 北京:国防工业出版社,l993:l38-138.

    SURESH S. Fatigue of Materials[M]. Beijing:National Defence Industry Press,l993:l38-138.
    [21] WASSON A J,FUCHS G E. The effect of carbide morphologies on elevated temperature tensile and fatigue behavior of a modified single crystal Ni-base superalloy [C]//Superalloys 2008. Pennsylvania,PA:TMS,2008:489-497.
    [22] FRITZEMEIER LG. The influence of high thermal gradient casting,hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy [C]//Superalloys 1988. WARRENDALE,PA:TMS,1988:265-274.
    [23] 陈皎,程礼,焦胜博,等. TC4钛合金超高周疲劳性能研究[J]. 实验力学,2018,33(2):272-280. doi: 10.7520/1001-4888-16-226

    CHEN J,CHENG L,JIAO S B,et al. On the ultra-high cycle fatigue behavior of titanium alloy TC4[J]. Journal of experimental mechanics,2018,33(2):272-280. doi: 10.7520/1001-4888-16-226
    [24] 余小斌. 电磁搅拌激光立体成形GH4169合金的组织和力学性能研究 [D]. 南昌:南昌航空大学,2015:42-43.

    YU X B. Microstructure and mechanical properties of GH4169 superalloy fabricated by electromagnetic stirring assisted laser solid forming [D]. Nanchang:Nanchang Hangkong University,2015:42-43.
    [25] 钟群鹏,赵子华. 断口学 [M]. 北京:高等教育出版社,2006:273-275.

    ZHONG Q P,ZHAO Z H. Fractography [M]. Beijing:Higher Education Press,2006:273-275.
    [26] 王莉,周忠娇,姜卫国,等. 第二取向对镍基单晶高温合金DD33热疲劳性能的影响[J]. 材料研究学报,2014,28(9):663-667. doi: 10.11901/1005.3093.2013.138

    WANG L,ZHOU Z J,JIANG W G,et al. Effect of secondary orientation on thermal fatigue behavior of a Nickel-base single crystal superalloy DD33[J]. Chinese Journal of Materials Research,2014,28(9):663-667. doi: 10.11901/1005.3093.2013.138
    [27] 黄志伟,袁福河,王中光,等. 铸造镍基高温合金M963 的高温低周疲劳行为[J]. 金属学报,2007,43(7):678-682. doi: 10.3321/j.issn:0412-1961.2007.07.002

    HUANG Z W,YUAN F H,WANG Z G,et al. Low cycle fatigue behavior of a cast nickel base superalloy M963 at elevated temperature[J]. Acta Metallurgica Sinica,2007,43(7):678-682. doi: 10.3321/j.issn:0412-1961.2007.07.002
    [28] ZHOU H,RO Y,HARADA H,et al. Deformation microstructures after low-cycle fatigue in a fourth-generation Ni-base SC superalloy TMS-138[J]. Materials Science and Engineering:A,2004,381:20-27. doi: 10.1016/j.msea.2004.04.051
    [29] 郑运荣,谢济洲. Hf和凝固冷速对定向凝固高温合金低周疲劳性能的影响[J]. 航空材料学报,2009,29(6):1-6. doi: 10.3969/j.issn.1005-5053.2009.6.001

    ZHENG Y R,XIE J Z. Effect of Element Hf and cooling rate during solidification on low cycle fatigue properties of directionally solidified superalloys[J]. Journal of Aeronautical Materials,2009,29(6):1-6. doi: 10.3969/j.issn.1005-5053.2009.6.001
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  5
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-07
  • 录用日期:  2023-08-09
  • 修回日期:  2023-08-13
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。