Tensile properties of SiC/AZ31 inverse nacre structured composite
-
摘要: 结合机械球磨和热变形工艺制备具有反贝壳结构的SiC/AZ31复合材料,通过工艺控制对复合材料微观结构进行有效调控。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)等对材料的微观结构进行表征,通过准静态拉伸实验测试材料的力学性能,并结合其微观形貌对强韧化机理与失效机制进行初步分析。结果表明:通过热变形工艺获得的反贝壳结构可以明显提升镁基复合材料的拉伸性能;当反贝壳结构复合材料基体的应变硬化能力得到提升时,能更好地补偿硬相中裂纹增殖带来的软化效应,复合材料的应变硬化能力得到提升。通过调控反贝壳材料软相片层尺寸,可以实现对拉伸性能的调控。软相片层较大时,材料拥有更好的韧性;软相片层较小时,材料拥有更高的强度。反贝壳结构复合材料良好的强韧性与其结构特点密不可分,其连续的硬相很好地起到了承载作用,而弥散的软相片层则有助于提升复合材料的韧性。该材料的主要强化机制包括弥散强化、细晶强化与异构形变诱导强化,而韧性的提高则归功于软相片层诱导的裂纹钝化和偏转。Abstract: SiC/AZ31 inverse nacre structured composite was prepared by mechanical ball milling and thermal deformation, and the microstructure of the composite was effectively controlled by process control. The microstructure was characterized by X-ray diffraction(XRD)and scanning electron microscopy(SEM), the mechanical properties of the material were tested by quasi-static tensile test, and the strengthening and toughening mechanism and failure mechanism were preliminarily analyzed by combining the microstructure. The results show that the inverse nacre structure obtained by hot deformation process can significantly improve the tensile properties. When the strain hardening ability of the matrix in the inverse nacre structured composite is improved, it can better compensate for the softening effect caused by crack propagation in the hard phase, and the strain hardening ability of the composite is improved. The tensile properties can be controlled by adjusting the size of the lamellar soft phase in the inverse nacre structured composite. When the size of lamellar soft phase is large, the composite has better toughness. When the size of lamellar soft phase is small, the composite has higher strength. The excellent strength and toughness of the inverse nacre structure composite are arising from its structural characteristics, and the continuous hard phase plays a good role in bearing, while the dispersed lamellar soft phase benefits for improving the toughness of the composite. The main strengthening mechanisms of this material include dispersion strengthening, fine grain strengthening, and heterogeneous deformation induced strengthening, and the improvement of toughness are attributed to the crack blunting and deflection induced by lamellar soft phase. In summary, the architecture design of inverse nacre structure is an effective way to obtain high-strength and tough magnesium matrix composite.
-
Key words:
- magnesium matrix nanocomposites /
- nacre /
- architecture /
- strength /
- toughness
-
表 1 不同样品制备工艺
Table 1. Preparation processes of different samples
Sample Component(volume fraction/%) Mass ratio(ball∶powder) Milling speed/(r·min−1) Milling time/h Deformation/% Inv- 1 95AZ31+5SiC 15∶1 180 10 40 Inv- 2 95AZ31+5SiC 15∶1 180 20 40 Inv- 3 95AZ31+5SiC 15∶1 180 30 40 表 2 不同片层尺寸SiC/AZ31反贝壳结构复合材料拉伸性能
Table 2. Tensile properties of SiC/AZ31 inverse nacre structured composite with different lamellar sizes
Material Yield strength/
MPaUltimate strength/
MPaElongation/% AZ31 151 232 5.6 Inv-1 202 340 6.8 Inv-2 308 432 4.8 Inv-3 399 472 1.7 -
[1] 何阳,袁秋红,罗岚,等. 镁基复合材料研究进展及新思路[J]. 航空材料学报,2018,38(4):26-28.HE Y,YUAN Q H,LUO L,et al. Current study and novel ideas on magnesium matrix composites[J]. Journal of Aeronautical Materials,2018,38(4):26-36. [2] 吴国华,陈玉狮,丁文江. 镁合金在航空航天领域研究应用现状与展望[J]. 载人航天,2016,22(3):281-292.WU G H,CHEN Y S,DING W J,Current research,application and future prospect of magnesium alloys in aerospace industry[J]. Manned Spaceflight,2016,22(3):281-292. [3] 常海,赵聪铭,王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程,2023,51(1):16-25.CHANG H,ZHAO C M,WANG C J. Microstructure and mechanical properties of AZ91-(SiCP/AZ91) clad plate fabricated by extrusion[J]. Journal of Materials Engineering,2023,51(1):16-25. [4] 聂凯波,朱智浩,邓坤坤,等. 热挤压高强TiCp/Mg-1.4Zn-2.6Ca-0.5Mn纳米复合材料的组织与力学性能[J]. 航空材料学报,2020,40(5):20-28.NIE K B,ZHU Z H,DENG K K,et al. Microstructure and mechanical properties of ultra-high strength TiCp/Mg-1.4Zn-2.6Ca-0.5Mn nanocomposite after hot extrusion[J]. Journal of Aeronautical Materials,2020,40(5):20-28. [5] WANG X J,XU D K,WU R Z,et al. What is going on in magnesium alloys?[J]. Journal of Materials Science & Technology,2018,34(2):245-247. [6] ZHANG X,ZHAO N,HE C. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design— a review [J]. Progress in Materials Science,2020,113:100672. doi: 10.1016/j.pmatsci.2020.100672 [7] 范根莲,郭峙岐,谭占秋,等. 金属材料的构型化复合与强韧化[J]. 金属学报,2022,58(11):1416-1426. doi: 10.11900/0412.1961.2022.00355FAN G L,GUO Z Q,TAN Z Q,et al. Architecture design strategies and strengthening-toughening mechanisms of metal matrix composites[J]. Acta Metallurgica Sinica,2022,58(11):1416-1426. doi: 10.11900/0412.1961.2022.00355 [8] LUO X,ZHAO K,HE X,et al. Evading strength and ductility trade-off in an inverse nacre structured magnesium matrix nanocomposite[J]. Acta Materialia,2022,228:117730. doi: 10.1016/j.actamat.2022.117730 [9] HABIBI M K,JOSHI S P,GUPTA M. Hierarchical magnesium nanocomposites for enhanced mechanical response[J]. Acta Materialia,2010,58(18):6104-6114. doi: 10.1016/j.actamat.2010.07.028 [10] SONG Z,HU X,XIANG Y,et al. Enhanced mechanical properties of CNTs/Mg biomimetic laminated composites[J]. Materials Science and Engineering:A,2021,802:140632. doi: 10.1016/j.msea.2020.140632 [11] 马英纯,罗茜,赵科,等. 球磨工艺对SiC/Mg非均匀纳米复合材料的影响[J]. 四川轻化工学报(自然科学版),2022,35(1):1-7.MA Y C,LUO X,ZHAO K,et al. Effect of milling processing on the heterogeneous SiC/Mg nanocomposites[J]. Journal of Sichuan University of Science & Engineering(Natural Science Edition),2022,35(1):1-7. [12] 涂林,刘金铃. SiCp/Mg非均匀纳米复合材料的微结构演化与合成机理[J]. 四川轻化工大学学报(自然科学版),2020,33(4):29-35.TU L,LIU J L. Microstructure evolution and synthesis mechanism of heterogeneous SiCp/Mg nanocomposites[J]. Journal of Sichuan University of Science & Engineering(Natural Science Edition),2020,33(4):29-35. [13] HE X,LUO X,LIU J L,et al. Effects of soft phase on the mechanical behaviors of hierarchical Mg nanocomposites[J]. Journal of Alloys and Compounds,2018,768:618-624. doi: 10.1016/j.jallcom.2018.07.194 [14] LUO X,ZHANG L G,HE X,et al. Heterogeneous magnesium matrix nanocomposites with high bending strength and fracture toughness[J]. Journal of Alloys and Compounds,2021,855:157359. doi: 10.1016/j.jallcom.2020.157359 [15] LUO X,LIU J,ZHANG L G,et al. Deformation and failure behavior of heterogeneous Mg/SiC nanocomposite under compression[J]. Journal of Magnesium and Alloys,2022,10(12):3433-3446. doi: 10.1016/j.jma.2021.04.008 [16] ZHU X X,CAO G H,LIU J L,et al. Enhanced strength and ductility synergy in aluminum composite with heterogeneous structure[J]. Materials Science and Engineering:A,2020,787:139431. doi: 10.1016/j.msea.2020.139431 [17] JIANG L,YANG H,YEE J K,et al. Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles[J]. Acta Materialia,2016,103:128-140. doi: 10.1016/j.actamat.2015.09.057 [18] 涂林. SiCp/Mg非均匀纳米复合材料的合成机理及拉伸力学性能研究[D]. 成都:西南交通大学,2020.TU L. Synthesis mechanism and tensile mechanical properties of heterogeneous SiCp/Mg nanocomposites[D]. Chengdu:Southwest Jiaotong University,2020. [19] JIA Y,REN C,WU S,et al. Multistage strain-hardening behavior of ultra strong and ductile lightweight refractory complex-concentrated alloys[J]. Journal of Materials Science & Technology,2023,149:73-87. [20] SURYANARAYANA C. Mechanical alloying and milling[J]. Progress in Materials Science,2001,46(1/2):1-184. [21] PANDEY A B,MAJUMDAR B S,MIRACLE D B. Effect of aluminum particles on the fracture toughness of a 7093/SiC/15p composite[J]. Materials Science and Engineering:A,1999,259(2):296-307. doi: 10.1016/S0921-5093(98)00901-0 [22] TANG F,HAGIWARA A,SCHOENUNG J A. Microstructure and tensile properties of bulk nanostructured Al-5083/SiCp composites prepared by cryomilling [J]. Materials Science and Engineering:A,2005,407(1/2):306-314. [23] ZHU Y T,AMEYAMA K,ANDERSON P M,et al. Heterostructured materials:superior properties from hetero-zone interaction[J]. Materials Research Letters,2020,9(1):1-31. [24] LIU Z Y,MA K,FAN G H,et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al-Cu-Mg nanocomposites by material parameter optimization[J]. Carbon,2020,157:602-613. doi: 10.1016/j.carbon.2019.10.080 -