SiC/AZ31反贝壳结构复合材料的拉伸性能

何博 罗茜 常超 赵科 刘金铃

何博, 罗茜, 常超, 赵科, 刘金铃. SiC/AZ31反贝壳结构复合材料的拉伸性能[J]. 航空材料学报, 2023, 43(5): 10-19. doi: 10.11868/j.issn.1005-5053.2023.000048
引用本文: 何博, 罗茜, 常超, 赵科, 刘金铃. SiC/AZ31反贝壳结构复合材料的拉伸性能[J]. 航空材料学报, 2023, 43(5): 10-19. doi: 10.11868/j.issn.1005-5053.2023.000048
HE Bo, LUO Xi, CHANG Chao, ZHAO Ke, LIU Jinling. Tensile properties of SiC/AZ31 inverse nacre structured composite[J]. Journal of Aeronautical Materials, 2023, 43(5): 10-19. doi: 10.11868/j.issn.1005-5053.2023.000048
Citation: HE Bo, LUO Xi, CHANG Chao, ZHAO Ke, LIU Jinling. Tensile properties of SiC/AZ31 inverse nacre structured composite[J]. Journal of Aeronautical Materials, 2023, 43(5): 10-19. doi: 10.11868/j.issn.1005-5053.2023.000048

SiC/AZ31反贝壳结构复合材料的拉伸性能

doi: 10.11868/j.issn.1005-5053.2023.000048
基金项目: 国家自然科学基金项目(51871187)
详细信息
    通讯作者:

    刘金铃(1983—),男,博士,主要从事金属基复合材料、高温结构陶瓷和场辅助制造技术的研究,联系地址:四川省成都市郫都区犀安路 999 号(611756),E-mail: liujinling@swjtu.edu.cn

  • 中图分类号: TB331

Tensile properties of SiC/AZ31 inverse nacre structured composite

  • 摘要: 结合机械球磨和热变形工艺制备具有反贝壳结构的SiC/AZ31复合材料,通过工艺控制对复合材料微观结构进行有效调控。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)等对材料的微观结构进行表征,通过准静态拉伸实验测试材料的力学性能,并结合其微观形貌对强韧化机理与失效机制进行初步分析。结果表明:通过热变形工艺获得的反贝壳结构可以明显提升镁基复合材料的拉伸性能;当反贝壳结构复合材料基体的应变硬化能力得到提升时,能更好地补偿硬相中裂纹增殖带来的软化效应,复合材料的应变硬化能力得到提升。通过调控反贝壳材料软相片层尺寸,可以实现对拉伸性能的调控。软相片层较大时,材料拥有更好的韧性;软相片层较小时,材料拥有更高的强度。反贝壳结构复合材料良好的强韧性与其结构特点密不可分,其连续的硬相很好地起到了承载作用,而弥散的软相片层则有助于提升复合材料的韧性。该材料的主要强化机制包括弥散强化、细晶强化与异构形变诱导强化,而韧性的提高则归功于软相片层诱导的裂纹钝化和偏转。

     

  • 图  1  SiC/AZ31反贝壳结构复合材料样品X射线衍射图

    Figure  1.  XRD patterns of samples of SiC/AZ31 inverse nacre structured composite

    图  2  SiC/AZ31反贝壳结构复合材料微观形貌 (a)平行于热锻方向;(b)垂直于热锻方向

    Figure  2.  Microstructures of SiC/AZ31 inverse nacre structured composite  (a)parallel to hot forging direction;(b)perpendicular to hot forging direction

    图  3  SiC/AZ31复合材料元素分布分析结果 (a)扫描区域形貌;(b)Mg;(c)Zn;(d)Si

    Figure  3.  Element mapping images of SiC/AZ31 composite  (a)scanning area morphology;(b)Mg;(c)Zn;(d)Si

    图  4  SiC/AZ31复合材料热锻前和热锻后的微观形貌 (a)Inv-1;(b)Inv-2;(c)Inv-3;(1)热锻前;(2)热锻后

    Figure  4.  Microstructure images of SiC/AZ31 composite before and after hot forging  (a)Inv-1;(b)Inv-2;(c)Inv-3;(1)before hot forging;(2)after hot forging

    图  5  SiC/AZ31反贝壳结构复合材料的软相尺寸统计图

    Figure  5.  Statistical diagram of soft phase size in SiC/AZ31 inverse nacre structured composite

    图  6  SiC/Mg与SiC/AZ31反贝壳结构复合材料的拉伸性能 (a)应力-应变曲线;(b)应变硬化率曲线

    Figure  6.  Tensile properties of SiC/Mg and SiC/AZ31 inverse nacre structured composite (a)stress-strain curves;(b)strain hardening rate curves

    图  7  SiC/AZ31反贝壳结构复合材料变形后的微观结构 (a)TEM明场像;(b)软相中晶粒的TEM暗场像

    Figure  7.  Microstructures of deformed SiC/AZ31 inverse nacre structured composite (a)TEM bright field image;(b)TEM dark field image of grains in soft phase

    图  8  不同片层尺寸SiC/AZ31反贝壳结构复合材料拉伸曲线

    Figure  8.  Tensile curves of SiC/AZ31 inverse nacre structured composite with different lamellar sizes

    图  9  SiC/AZ31反贝壳结构复合材料变形后的裂纹扩展特征 (a)裂纹钝化;(b)裂纹偏转

    Figure  9.  Crack propagation characteristics of inverse nacre structured SiC/AZ31 composite  (a)crack blunting;(b)crack deflection

    图  10  不同片层尺寸SiC/AZ31反贝壳结构复合材料拉伸断口照片 (a)Inv-1;(b)Inv-2;(c)Inv-3;(1)低倍;(2)中倍;(3)高倍

    Figure  10.  Fractographs of SiC/AZ31 inverse nacre structured composite with different lamellar sizes  (a)Inv-1;(b)Inv-2;(c)Inv-3;(1)low magnification ;(2)medium magnification;(3)high magnification

    表  1  不同样品制备工艺

    Table  1.   Preparation processes of different samples

    SampleComponent(volume fraction/%)Mass ratio(ball∶powder)Milling speed/(r·min−1Milling time/hDeformation/%
    Inv- 195AZ31+5SiC15∶11801040
    Inv- 295AZ31+5SiC15∶11802040
    Inv- 395AZ31+5SiC15∶11803040
    下载: 导出CSV

    表  2  不同片层尺寸SiC/AZ31反贝壳结构复合材料拉伸性能

    Table  2.   Tensile properties of SiC/AZ31 inverse nacre structured composite with different lamellar sizes

    MaterialYield strength/
    MPa
    Ultimate strength/
    MPa
    Elongation/%
    AZ311512325.6
    Inv-12023406.8
    Inv-23084324.8
    Inv-33994721.7
    下载: 导出CSV
  • [1] 何阳,袁秋红,罗岚,等. 镁基复合材料研究进展及新思路[J]. 航空材料学报,2018,38(4):26-28.

    HE Y,YUAN Q H,LUO L,et al. Current study and novel ideas on magnesium matrix composites[J]. Journal of Aeronautical Materials,2018,38(4):26-36.
    [2] 吴国华,陈玉狮,丁文江. 镁合金在航空航天领域研究应用现状与展望[J]. 载人航天,2016,22(3):281-292.

    WU G H,CHEN Y S,DING W J,Current research,application and future prospect of magnesium alloys in aerospace industry[J]. Manned Spaceflight,2016,22(3):281-292.
    [3] 常海,赵聪铭,王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程,2023,51(1):16-25.

    CHANG H,ZHAO C M,WANG C J. Microstructure and mechanical properties of AZ91-(SiCP/AZ91) clad plate fabricated by extrusion[J]. Journal of Materials Engineering,2023,51(1):16-25.
    [4] 聂凯波,朱智浩,邓坤坤,等. 热挤压高强TiCp/Mg-1.4Zn-2.6Ca-0.5Mn纳米复合材料的组织与力学性能[J]. 航空材料学报,2020,40(5):20-28.

    NIE K B,ZHU Z H,DENG K K,et al. Microstructure and mechanical properties of ultra-high strength TiCp/Mg-1.4Zn-2.6Ca-0.5Mn nanocomposite after hot extrusion[J]. Journal of Aeronautical Materials,2020,40(5):20-28.
    [5] WANG X J,XU D K,WU R Z,et al. What is going on in magnesium alloys?[J]. Journal of Materials Science & Technology,2018,34(2):245-247.
    [6] ZHANG X,ZHAO N,HE C. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design— a review [J]. Progress in Materials Science,2020,113:100672. doi: 10.1016/j.pmatsci.2020.100672
    [7] 范根莲,郭峙岐,谭占秋,等. 金属材料的构型化复合与强韧化[J]. 金属学报,2022,58(11):1416-1426. doi: 10.11900/0412.1961.2022.00355

    FAN G L,GUO Z Q,TAN Z Q,et al. Architecture design strategies and strengthening-toughening mechanisms of metal matrix composites[J]. Acta Metallurgica Sinica,2022,58(11):1416-1426. doi: 10.11900/0412.1961.2022.00355
    [8] LUO X,ZHAO K,HE X,et al. Evading strength and ductility trade-off in an inverse nacre structured magnesium matrix nanocomposite[J]. Acta Materialia,2022,228:117730. doi: 10.1016/j.actamat.2022.117730
    [9] HABIBI M K,JOSHI S P,GUPTA M. Hierarchical magnesium nanocomposites for enhanced mechanical response[J]. Acta Materialia,2010,58(18):6104-6114. doi: 10.1016/j.actamat.2010.07.028
    [10] SONG Z,HU X,XIANG Y,et al. Enhanced mechanical properties of CNTs/Mg biomimetic laminated composites[J]. Materials Science and Engineering:A,2021,802:140632. doi: 10.1016/j.msea.2020.140632
    [11] 马英纯,罗茜,赵科,等. 球磨工艺对SiC/Mg非均匀纳米复合材料的影响[J]. 四川轻化工学报(自然科学版),2022,35(1):1-7.

    MA Y C,LUO X,ZHAO K,et al. Effect of milling processing on the heterogeneous SiC/Mg nanocomposites[J]. Journal of Sichuan University of Science & Engineering(Natural Science Edition),2022,35(1):1-7.
    [12] 涂林,刘金铃. SiCp/Mg非均匀纳米复合材料的微结构演化与合成机理[J]. 四川轻化工大学学报(自然科学版),2020,33(4):29-35.

    TU L,LIU J L. Microstructure evolution and synthesis mechanism of heterogeneous SiCp/Mg nanocomposites[J]. Journal of Sichuan University of Science & Engineering(Natural Science Edition),2020,33(4):29-35.
    [13] HE X,LUO X,LIU J L,et al. Effects of soft phase on the mechanical behaviors of hierarchical Mg nanocomposites[J]. Journal of Alloys and Compounds,2018,768:618-624. doi: 10.1016/j.jallcom.2018.07.194
    [14] LUO X,ZHANG L G,HE X,et al. Heterogeneous magnesium matrix nanocomposites with high bending strength and fracture toughness[J]. Journal of Alloys and Compounds,2021,855:157359. doi: 10.1016/j.jallcom.2020.157359
    [15] LUO X,LIU J,ZHANG L G,et al. Deformation and failure behavior of heterogeneous Mg/SiC nanocomposite under compression[J]. Journal of Magnesium and Alloys,2022,10(12):3433-3446. doi: 10.1016/j.jma.2021.04.008
    [16] ZHU X X,CAO G H,LIU J L,et al. Enhanced strength and ductility synergy in aluminum composite with heterogeneous structure[J]. Materials Science and Engineering:A,2020,787:139431. doi: 10.1016/j.msea.2020.139431
    [17] JIANG L,YANG H,YEE J K,et al. Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles[J]. Acta Materialia,2016,103:128-140. doi: 10.1016/j.actamat.2015.09.057
    [18] 涂林. SiCp/Mg非均匀纳米复合材料的合成机理及拉伸力学性能研究[D]. 成都:西南交通大学,2020.

    TU L. Synthesis mechanism and tensile mechanical properties of heterogeneous SiCp/Mg nanocomposites[D]. Chengdu:Southwest Jiaotong University,2020.
    [19] JIA Y,REN C,WU S,et al. Multistage strain-hardening behavior of ultra strong and ductile lightweight refractory complex-concentrated alloys[J]. Journal of Materials Science & Technology,2023,149:73-87.
    [20] SURYANARAYANA C. Mechanical alloying and milling[J]. Progress in Materials Science,2001,46(1/2):1-184.
    [21] PANDEY A B,MAJUMDAR B S,MIRACLE D B. Effect of aluminum particles on the fracture toughness of a 7093/SiC/15p composite[J]. Materials Science and Engineering:A,1999,259(2):296-307. doi: 10.1016/S0921-5093(98)00901-0
    [22] TANG F,HAGIWARA A,SCHOENUNG J A. Microstructure and tensile properties of bulk nanostructured Al-5083/SiCp composites prepared by cryomilling [J]. Materials Science and Engineering:A,2005,407(1/2):306-314.
    [23] ZHU Y T,AMEYAMA K,ANDERSON P M,et al. Heterostructured materials:superior properties from hetero-zone interaction[J]. Materials Research Letters,2020,9(1):1-31.
    [24] LIU Z Y,MA K,FAN G H,et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al-Cu-Mg nanocomposites by material parameter optimization[J]. Carbon,2020,157:602-613. doi: 10.1016/j.carbon.2019.10.080
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  10
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-06-07
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。