[1] |
王天元,黄帅,周标,等. 航空装备激光增材制造技术发展及路线图[J]. 航空材料学报,2023,43(1):1-17.WANG T Y,HUANG S,ZHOU B,et al. Development and roadmap of laser additive manufacturing technology for aviation equipment[J]. Journal of Aeronautical Materials,2023,43(1):1-17.
|
[2] |
郑涛,郭绍庆,张国栋,等. 航空装备电弧熔丝增材制造技术发展及路线规划图[J]. 航空材料学报,2023,43(1):18-27.ZHENG T,GUO S Q,ZHANG G D,et al. Development and roadmap of wire arc additive manufacturing technology for aviation equipment[J]. Journal of Aeronautical Materials,2023,43(1):18-27.
|
[3] |
张国栋,许乔郅,郑涛,等. 航空装备电子束增材制造技术发展及路线图[J]. 航空材料学报,2023,43(1):28-38.ZHANG G D,XU Q Z,ZHENG T,et al. Development and roadmap of electronic beam additive manufacturing technology for aviation equipment [J]. Journal of Aeronautical Materials,2023,43(1):28-38.
|
[4] |
顾冬冬,张红梅,陈洪宇,等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光,2020,47(5):32-55.GU D D,ZHANG H M,CHEN H Y,et al. Laser additive manufacturing of high-performance aerospace metal components [J]. Chinese Journal of Lasers,2020,47(5):32-55.
|
[5] |
廉艳平,王潘丁,高杰,等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展,2021,51(3):648-701.LIAN Y P,WANG P D,GAO J,et al. Research progress on key mechanical issues in metal additive manufacturing [J]. Advances in Mechanics,2021,51(3):648-701.
|
[6] |
王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报,2014,35(10):2690-2698.WANG H M. Laser additive manufacturing of high performance large metal components:some material fundamentals [J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2690-2698.
|
[7] |
CHATURVEDI M,SCUTELNICU E,RUSU CC,et al. Wire arc additive manufacturing:review on recent findings and challenges in industrial applications and materials characterization [J]. Metals,2021,11(6):939. doi: 10.3390/met11060939
|
[8] |
张磊,卓林蓉,汤桂平,等. 增材制造超材料及其隐身功能调控的研究进展[J]. 航空材料学报,2018,38(3):10-19. doi: 10.11868/j.issn.1005-5053.2018.001009ZHANG L,ZHUO L R,TANG G P,et al. Research progress on additive manufacturing metamaterials and their stealth function regulation [J]. Journal of Aeronautical Materials,2018,38(3):10-19. doi: 10.11868/j.issn.1005-5053.2018.001009
|
[9] |
韩启飞,符瑞,胡锦龙,等. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程,2022,50(4):62-73.HAN Q F,FU R,HU J L,et al. Research progress of arc wire additive manufacturing for aluminum alloy [J]. Journal of Materials Engineering,2022,50(4):62-73.
|
[10] |
KUMAR L J,KRISHNADAS NAIR C G. Current trends of additive manufacturing in the aerospace industry [J]. Advances in 3D Printing & Additive Manufacturing Technologies,2017:39-54.
|
[11] |
卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程,2020,31(1):19-23.LU B H. Additive manufacturing technology:present and future [J]. China Mechanical Engineering,2020,31(1):19-23.
|
[12] |
CARROLL B E,PALMER T A,BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Materialia,2015,87:309-320. doi: 10.1016/j.actamat.2014.12.054
|
[13] |
GIBSON I,ROSEN D W,STUCKER B,et al. Additive manufacturing technologies [M]. Vol 17. Cham,Switzerland:Springer,2021.
|
[14] |
TAN C L,CHEW Y X,DUAN R X,et al. Additive manufacturing of multi-scale heterostructured high-strength steels [J]. Materials Research Letters,2021,9(7):291-299. doi: 10.1080/21663831.2021.1904299
|
[15] |
ZHOU K X,CUI D C,CHAI Z S,et al. In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy[J]. Additive Manufacturing,2023,66:103443. doi: 10.1016/j.addma.2023.103443
|
[16] |
LIU Y G,ZHANG J Q,TAN Q Y,et al. Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion[J]. Acta Materialia,2021,220:117311. doi: 10.1016/j.actamat.2021.117311
|
[17] |
张姣姣,王铁钢,阎兵,等. 复合磁控溅射Zr-B-N涂层微结构的控制及性能研究[J]. 真空科学与技术学报,2018,38(6):479-486.ZHANG J J,WANG T G,YAN B,et al. Controlling microstructure and properties of composite Zr-B-N coatings prepared by magnetron sputtering [J]. Journal of Vacuum Science and Technology,2018,38(6):479-486.
|
[18] |
KHORASANI A M,GIBSON I,GHADERI A,et al. Investigation on the effect of heat treatment and process parameters on the tensile behavior of SLM Ti-6Al-4V parts [J]. The International Journal of Advanced Manufacturing Technology,2019,101:3183-3197. doi: 10.1007/s00170-018-3162-8
|
[19] |
WANG H,CAHO Q,CUI X Y,et al. Introducing C phase in additively manufactured Ti-6Al-4V:a new oxygen-stabilized face-centred cubic solid solution with improved mechanical properties[J]. Materials Today,2022,61:11-21. doi: 10.1016/j.mattod.2022.10.026
|
[20] |
董万鹏,高华兵,果春焕,等. 增材制造工艺及热处理对Ti-6Al-4V合金组织和性能的影响[J]. 航空材料学报,2022,42(6);22-32.DONG W P,GAO H B,GUO C H,et al. Effects of additive manufacturing process and heat treatment on microstructure and properties of Ti-6Al-4V alloy [J]. Journal of Aeronautical Materials,2022,42(6):22-32.
|
[21] |
虞文军,荣鹏,厉瑞琪,等. 增材制造Ti6Al4V合金损伤容限性能研究进展[J]. 中国有色金属学报,2023,33(2):353-371.YU W J,RONG P,LI R Q,et al. Research progress on damage tolerance of additively manufactured Ti6Al4V alloy [J]. The Chinese Journal of Nonferrous Metals,2023,33(2):353-371.
|
[22] |
任永明,林鑫,黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展[J]. 稀有金属材料与工程,2017,46(10):3160-3168.REN Y M,LIN X,HUANG W D,et al. Research progress on microstructure and fatigue properties of additively manufactured Ti-6Al-4V alloy [J]. Rare Metal Materials and Engineering,2017,46(10):3160-3168.
|
[23] |
刘包发,胡剑南,石俊杰,等. 热处理对增材制造TC4钛合金组织结构及耐蚀性能的影响[J]. 材料热处理学报,2023,44(5):86-94.LIU B F,HU J N,SHI J J,et al. Effects of heat treatment on microstructure and corrosion resistance of additively manufactured TC4 titanium alloy [J]. Transactions of Materials and Heat Treatment,2023,44(5):86-94.
|
[24] |
BHUJANGRAO T,VEIGA F,SUÁREZ A,et al. High-temperature mechanical properties of IN718 alloy:comparison of additive manufactured and wrought samples [J]. Crystals,2020,10(8):689. doi: 10.3390/cryst10080689
|
[25] |
SHI Y,LI Y,LIU J,et al. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel [J]. Optics & Laser Technology,2018,99:256-270.
|
[26] |
WANG T,ZHU Y Y,ZHANG S Q,et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing [J]. Alloys Compound,2015,632:505-513. doi: 10.1016/j.jallcom.2015.01.256
|
[27] |
FAN S,GUO X,LI Z. et al. A review of high-strength aluminum-copper alloys fabricated by wire arc additive manufacturing:microstructure,properties,defects,and post-processing[J]. Journal of Materials Engineering and Performance,[2023-09-01]. doi.org/10.1007/s11665-023-08233-5.
|
[28] |
ADAM H,NORFOLK M. A comprehensive review of ultrasonic additive manufacturing [J]. Rapid Prototyping Journal,2019,26(3):445-458. doi: 10.1108/RPJ-03-2019-0056
|
[29] |
FABRISONIC. Gradient Material Solutions [EB/OL]. [2023-09-01].https://fabrisonic.com/gradient-material-solutions/ (2020).
|
[30] |
段晟昱,王潘丁,刘畅,等. 增材制造三维点阵结构设计、优化与性能表征方法研究进展[J]. 航空制造技术,2022,65(14):36-48.DUAN S Y,WANG P D,LIU C,et al. Research progress on design,optimization and performance characterization methods of additively manufactured 3D lattice structures [J]. Aeronautical Manufacturing Technology,2022,65(14):36-48.
|
[31] |
夏晓光,段国林. 功能梯度材料增材制造技术的研究进展及展望[J]. 材料导报,2022,36(10):134-140.XIA X G,DUAN G L. Research progress and prospects of additive manufacturing technology for functionally graded materials [J]. Materials Review,2022,36(10):134-140.
|
[32] |
YU Z J,LIN Z,WEI Y G. Closed-form functions of cross-scale indentation scaling relationships based on a strain gradient plasticity theory [J]. Philosophical Magazine,2021,101(11):1305-1326. doi: 10.1080/14786435.2021.1897896
|
[33] |
於之杰,魏悦广. 固体跨尺度压痕标度律的研究与展望[J]. 力学学报,2022,54(8):2085-2100. doi: 10.6052/0459-1879-22-273YU Z J,WEI Y G. Research and prospects of cross-scale indentation scaling relationships [J]. Chinese Journal of Theoretical and Applied Mechanics,2022,54(8):2085-2100. doi: 10.6052/0459-1879-22-273
|
[34] |
WANG Y F,WEI Y G,ZHAO Z F,et al. Activating dispersed strain bands in tensioned nanostructure layer for high ductility:the effects of microstructure inhomogeneity[J]. International Journal of Plasticity,2022,149:103159. doi: 10.1016/j.ijplas.2021.103159
|
[35] |
ZHAO J F,LIU B,WANG Y F,et al. Dispersed strain bands promote the ductility of gradient nano-grained material:a strain gradient constitutive modeling considering damage effect[J]. Mechanics of Materials,2023,179:104599. doi: 10.1016/j.mechmat.2023.104599
|
[36] |
WANG Y F,HUANG C X,MA X L,et al. The optimum grain size for strength-ductility combination in metals[J]. International Journal of Plasticity,2023,164:103574. doi: 10.1016/j.ijplas.2023.103574
|
[37] |
WANG Y F,ZHU Y T,YU Z J,et al. Hetero-zone boundary affected region:a primary microstructural factor controlling extra work hardening in heterostructure [J]. Acta Materialia,2022,241:118395. doi: 10.1016/j.actamat.2022.118395
|
[38] |
HUANG Y,QU S,HWANG K C,et al. A conventional theory of mechanism-based strain gradient plasticity [J]. International Journal of Plasticity,2004,20(4):753-782.
|
[39] |
刘小辉,刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程,2022,50(8):1-16.LIU X H,LIU Y Z. Research status of grain refinement and crack suppression in laser selective melting of high strength aluminum alloys [J]. Materials Engineering,2022,50(8):1-16.
|
[40] |
王林,沈忱,张弛,等. 增材制造TiAl合金的研究现状及展望[J]. 电焊机,2020,50(4):1-12.WANG L,SHEN S,ZHANG C,et al. Research status and prospects of additive manufacturing TiAl alloy [J]. Welding Machine,2020,50(4):1-12.
|
[41] |
LU D,LIN B,LIU T,et al. Effect of grain structure on fatigue crack propagation behavior of Al-Cu-Li alloys [J]. Journal of Materials Science & Technology,2023,148:75-89.
|
[42] |
万宏远,刘壮壮,韩泉泉,等. 激光增材制造高温合金抗开裂行为研究进展[J]. 航空科学技术,2022,33(9):26-42.WAN H Y,LIU Z Z,HAN Q Q,et al. Research progress on crack resistance behavior of laser additive manufacturing high temperature alloys [J]. Aeronautical Science and Technology,2022,33(9):26-42.
|
[43] |
杜畅,张津,连勇,等. 激光增材制造残余应力研究现状[J]. 表面技术,2019,48(1):200-207.DU C,ZHANG J,LIAN Y,et al. Research status of residual stress in laser additive manufacturing [J]. Surface Technology,2019,48(1):200-207.
|