航空增材制造技术中的跨尺度力学研究进展

於之杰 徐碧涵 王向盈 孙启星 王艳飞

於之杰, 徐碧涵, 王向盈, 孙启星, 王艳飞. 航空增材制造技术中的跨尺度力学研究进展[J]. 航空材料学报, 2023, 43(5): 1-9. doi: 10.11868/j.issn.1005-5053.2023.000091
引用本文: 於之杰, 徐碧涵, 王向盈, 孙启星, 王艳飞. 航空增材制造技术中的跨尺度力学研究进展[J]. 航空材料学报, 2023, 43(5): 1-9. doi: 10.11868/j.issn.1005-5053.2023.000091
YU Zhijie, XU Bihan, WANG Xiangying, SUN Qixing, WANG Yanfei. Progress of cross-scale mechanics in additive manufacturing technology for aeronautical application[J]. Journal of Aeronautical Materials, 2023, 43(5): 1-9. doi: 10.11868/j.issn.1005-5053.2023.000091
Citation: YU Zhijie, XU Bihan, WANG Xiangying, SUN Qixing, WANG Yanfei. Progress of cross-scale mechanics in additive manufacturing technology for aeronautical application[J]. Journal of Aeronautical Materials, 2023, 43(5): 1-9. doi: 10.11868/j.issn.1005-5053.2023.000091

航空增材制造技术中的跨尺度力学研究进展

doi: 10.11868/j.issn.1005-5053.2023.000091
详细信息
    通讯作者:

    於之杰(1995—),男,博士,工程师,研究方向为金属增材制造、固体力学,联系地址:北京市朝阳区小关东里14号(100029),E-mail: yuzhijie@cae.ac.cn

    王艳飞(1993—),男,博士,副教授,研究方向为跨尺度结构金属材料设计与变形理论、固体力学,联系地址:陕西省西安市咸宁西路28号(710049),E-mail: yfwang2@pku.edu.cn

  • 中图分类号: TG113.25

Progress of cross-scale mechanics in additive manufacturing technology for aeronautical application

  • 摘要: 金属增材制造技术及产品在航空领域中有广阔应用前景,其中既需要结构尺度上的优化设计也需要材料尺度上的精细控制和高效利用。材料微结构作为金属增材制造的典型特征之一,会对材料带来不可避免的性能影响。研究表明,一方面增材制造材料的均匀性、韧性、疲劳断裂特性常常不如传统材料,而另一方面其强度、硬度、耐磨损性能等又往往较传统材料更高,这是微纳米尺度中的尺度效应对具有微结构的金属材料带来的显著影响。在不同的微观非均匀性的情况下,材料能够在强度与韧性间得到一个更优的平衡,而这些方法和成果同时非常适用于增材制造金属材料。因此,增材制造的工艺特性以及人为设计所引入的非均匀结构有望显著提升金属材料的综合性能,对于航空领域的金属增材制造的应用具有重要的指导价值,但其中的许多问题尚不明晰,与材料的其他性能间的协同和拮抗关系还值得进一步研究。

     

  • 图  1  增材制造金属材料熔池凝固产生的鱼鳞纹样微观非均匀结构[13]

    Figure  1.  Microheterogeneity of fish scale pattern produced by solidification of melting pool during metal AM [13]

    图  2  退火前后的激光选区融化制造钛合金晶体结构[18] (a)退火前;(b)退火后

    Figure  2.  Titanium alloy(SLM)crystal structures before and after annealing [18] (a)as-built;(b)annealed

    图  3  CMSG理论对金属纳米压痕硬度的预测[32]

    Figure  3.  CMSG prediction of metal microhardness [32]

    图  4  不同异构模型的应力应变关系 (a)和额外强化关系(b) [37]

    Figure  4.  Stress-strain relationship (a)and extra hardening relationship(b)of different heterostructured materials[37]

    图  5  界面附近的应变梯度分布(a),以及界面影响区宽度与应变(b)和路径选择(c)的关系[37]

    Figure  5.  Strain gradient distribution near the domain boundary(a), relationship between IAZ width and strain(b)and paths(c) [37]

    图  6  不同外载下额外强化效应与界面影响区体积分数的关系[37]

    Figure  6.  Relationship between extra hardening and IAZ volume fraction under different loads [37]

  • [1] 王天元,黄帅,周标,等. 航空装备激光增材制造技术发展及路线图[J]. 航空材料学报,2023,43(1):1-17.

    WANG T Y,HUANG S,ZHOU B,et al. Development and roadmap of laser additive manufacturing technology for aviation equipment[J]. Journal of Aeronautical Materials,2023,43(1):1-17.
    [2] 郑涛,郭绍庆,张国栋,等. 航空装备电弧熔丝增材制造技术发展及路线规划图[J]. 航空材料学报,2023,43(1):18-27.

    ZHENG T,GUO S Q,ZHANG G D,et al. Development and roadmap of wire arc additive manufacturing technology for aviation equipment[J]. Journal of Aeronautical Materials,2023,43(1):18-27.
    [3] 张国栋,许乔郅,郑涛,等. 航空装备电子束增材制造技术发展及路线图[J]. 航空材料学报,2023,43(1):28-38.

    ZHANG G D,XU Q Z,ZHENG T,et al. Development and roadmap of electronic beam additive manufacturing technology for aviation equipment [J]. Journal of Aeronautical Materials,2023,43(1):28-38.
    [4] 顾冬冬,张红梅,陈洪宇,等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光,2020,47(5):32-55.

    GU D D,ZHANG H M,CHEN H Y,et al. Laser additive manufacturing of high-performance aerospace metal components [J]. Chinese Journal of Lasers,2020,47(5):32-55.
    [5] 廉艳平,王潘丁,高杰,等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展,2021,51(3):648-701.

    LIAN Y P,WANG P D,GAO J,et al. Research progress on key mechanical issues in metal additive manufacturing [J]. Advances in Mechanics,2021,51(3):648-701.
    [6] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报,2014,35(10):2690-2698.

    WANG H M. Laser additive manufacturing of high performance large metal components:some material fundamentals [J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2690-2698.
    [7] CHATURVEDI M,SCUTELNICU E,RUSU CC,et al. Wire arc additive manufacturing:review on recent findings and challenges in industrial applications and materials characterization [J]. Metals,2021,11(6):939. doi: 10.3390/met11060939
    [8] 张磊,卓林蓉,汤桂平,等. 增材制造超材料及其隐身功能调控的研究进展[J]. 航空材料学报,2018,38(3):10-19. doi: 10.11868/j.issn.1005-5053.2018.001009

    ZHANG L,ZHUO L R,TANG G P,et al. Research progress on additive manufacturing metamaterials and their stealth function regulation [J]. Journal of Aeronautical Materials,2018,38(3):10-19. doi: 10.11868/j.issn.1005-5053.2018.001009
    [9] 韩启飞,符瑞,胡锦龙,等. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程,2022,50(4):62-73.

    HAN Q F,FU R,HU J L,et al. Research progress of arc wire additive manufacturing for aluminum alloy [J]. Journal of Materials Engineering,2022,50(4):62-73.
    [10] KUMAR L J,KRISHNADAS NAIR C G. Current trends of additive manufacturing in the aerospace industry [J]. Advances in 3D Printing & Additive Manufacturing Technologies,2017:39-54.
    [11] 卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程,2020,31(1):19-23.

    LU B H. Additive manufacturing technology:present and future [J]. China Mechanical Engineering,2020,31(1):19-23.
    [12] CARROLL B E,PALMER T A,BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Materialia,2015,87:309-320. doi: 10.1016/j.actamat.2014.12.054
    [13] GIBSON I,ROSEN D W,STUCKER B,et al. Additive manufacturing technologies [M]. Vol 17. Cham,Switzerland:Springer,2021.
    [14] TAN C L,CHEW Y X,DUAN R X,et al. Additive manufacturing of multi-scale heterostructured high-strength steels [J]. Materials Research Letters,2021,9(7):291-299. doi: 10.1080/21663831.2021.1904299
    [15] ZHOU K X,CUI D C,CHAI Z S,et al. In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy[J]. Additive Manufacturing,2023,66:103443. doi: 10.1016/j.addma.2023.103443
    [16] LIU Y G,ZHANG J Q,TAN Q Y,et al. Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion[J]. Acta Materialia,2021,220:117311. doi: 10.1016/j.actamat.2021.117311
    [17] 张姣姣,王铁钢,阎兵,等. 复合磁控溅射Zr-B-N涂层微结构的控制及性能研究[J]. 真空科学与技术学报,2018,38(6):479-486.

    ZHANG J J,WANG T G,YAN B,et al. Controlling microstructure and properties of composite Zr-B-N coatings prepared by magnetron sputtering [J]. Journal of Vacuum Science and Technology,2018,38(6):479-486.
    [18] KHORASANI A M,GIBSON I,GHADERI A,et al. Investigation on the effect of heat treatment and process parameters on the tensile behavior of SLM Ti-6Al-4V parts [J]. The International Journal of Advanced Manufacturing Technology,2019,101:3183-3197. doi: 10.1007/s00170-018-3162-8
    [19] WANG H,CAHO Q,CUI X Y,et al. Introducing C phase in additively manufactured Ti-6Al-4V:a new oxygen-stabilized face-centred cubic solid solution with improved mechanical properties[J]. Materials Today,2022,61:11-21. doi: 10.1016/j.mattod.2022.10.026
    [20] 董万鹏,高华兵,果春焕,等. 增材制造工艺及热处理对Ti-6Al-4V合金组织和性能的影响[J]. 航空材料学报,2022,42(6);22-32.

    DONG W P,GAO H B,GUO C H,et al. Effects of additive manufacturing process and heat treatment on microstructure and properties of Ti-6Al-4V alloy [J]. Journal of Aeronautical Materials,2022,42(6):22-32.
    [21] 虞文军,荣鹏,厉瑞琪,等. 增材制造Ti6Al4V合金损伤容限性能研究进展[J]. 中国有色金属学报,2023,33(2):353-371.

    YU W J,RONG P,LI R Q,et al. Research progress on damage tolerance of additively manufactured Ti6Al4V alloy [J]. The Chinese Journal of Nonferrous Metals,2023,33(2):353-371.
    [22] 任永明,林鑫,黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展[J]. 稀有金属材料与工程,2017,46(10):3160-3168.

    REN Y M,LIN X,HUANG W D,et al. Research progress on microstructure and fatigue properties of additively manufactured Ti-6Al-4V alloy [J]. Rare Metal Materials and Engineering,2017,46(10):3160-3168.
    [23] 刘包发,胡剑南,石俊杰,等. 热处理对增材制造TC4钛合金组织结构及耐蚀性能的影响[J]. 材料热处理学报,2023,44(5):86-94.

    LIU B F,HU J N,SHI J J,et al. Effects of heat treatment on microstructure and corrosion resistance of additively manufactured TC4 titanium alloy [J]. Transactions of Materials and Heat Treatment,2023,44(5):86-94.
    [24] BHUJANGRAO T,VEIGA F,SUÁREZ A,et al. High-temperature mechanical properties of IN718 alloy:comparison of additive manufactured and wrought samples [J]. Crystals,2020,10(8):689. doi: 10.3390/cryst10080689
    [25] SHI Y,LI Y,LIU J,et al. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel [J]. Optics & Laser Technology,2018,99:256-270.
    [26] WANG T,ZHU Y Y,ZHANG S Q,et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing [J]. Alloys Compound,2015,632:505-513. doi: 10.1016/j.jallcom.2015.01.256
    [27] FAN S,GUO X,LI Z. et al. A review of high-strength aluminum-copper alloys fabricated by wire arc additive manufacturing:microstructure,properties,defects,and post-processing[J]. Journal of Materials Engineering and Performance,[2023-09-01]. doi.org/10.1007/s11665-023-08233-5.
    [28] ADAM H,NORFOLK M. A comprehensive review of ultrasonic additive manufacturing [J]. Rapid Prototyping Journal,2019,26(3):445-458. doi: 10.1108/RPJ-03-2019-0056
    [29] FABRISONIC. Gradient Material Solutions [EB/OL]. [2023-09-01].https://fabrisonic.com/gradient-material-solutions/ (2020).
    [30] 段晟昱,王潘丁,刘畅,等. 增材制造三维点阵结构设计、优化与性能表征方法研究进展[J]. 航空制造技术,2022,65(14):36-48.

    DUAN S Y,WANG P D,LIU C,et al. Research progress on design,optimization and performance characterization methods of additively manufactured 3D lattice structures [J]. Aeronautical Manufacturing Technology,2022,65(14):36-48.
    [31] 夏晓光,段国林. 功能梯度材料增材制造技术的研究进展及展望[J]. 材料导报,2022,36(10):134-140.

    XIA X G,DUAN G L. Research progress and prospects of additive manufacturing technology for functionally graded materials [J]. Materials Review,2022,36(10):134-140.
    [32] YU Z J,LIN Z,WEI Y G. Closed-form functions of cross-scale indentation scaling relationships based on a strain gradient plasticity theory [J]. Philosophical Magazine,2021,101(11):1305-1326. doi: 10.1080/14786435.2021.1897896
    [33] 於之杰,魏悦广. 固体跨尺度压痕标度律的研究与展望[J]. 力学学报,2022,54(8):2085-2100. doi: 10.6052/0459-1879-22-273

    YU Z J,WEI Y G. Research and prospects of cross-scale indentation scaling relationships [J]. Chinese Journal of Theoretical and Applied Mechanics,2022,54(8):2085-2100. doi: 10.6052/0459-1879-22-273
    [34] WANG Y F,WEI Y G,ZHAO Z F,et al. Activating dispersed strain bands in tensioned nanostructure layer for high ductility:the effects of microstructure inhomogeneity[J]. International Journal of Plasticity,2022,149:103159. doi: 10.1016/j.ijplas.2021.103159
    [35] ZHAO J F,LIU B,WANG Y F,et al. Dispersed strain bands promote the ductility of gradient nano-grained material:a strain gradient constitutive modeling considering damage effect[J]. Mechanics of Materials,2023,179:104599. doi: 10.1016/j.mechmat.2023.104599
    [36] WANG Y F,HUANG C X,MA X L,et al. The optimum grain size for strength-ductility combination in metals[J]. International Journal of Plasticity,2023,164:103574. doi: 10.1016/j.ijplas.2023.103574
    [37] WANG Y F,ZHU Y T,YU Z J,et al. Hetero-zone boundary affected region:a primary microstructural factor controlling extra work hardening in heterostructure [J]. Acta Materialia,2022,241:118395. doi: 10.1016/j.actamat.2022.118395
    [38] HUANG Y,QU S,HWANG K C,et al. A conventional theory of mechanism-based strain gradient plasticity [J]. International Journal of Plasticity,2004,20(4):753-782.
    [39] 刘小辉,刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程,2022,50(8):1-16.

    LIU X H,LIU Y Z. Research status of grain refinement and crack suppression in laser selective melting of high strength aluminum alloys [J]. Materials Engineering,2022,50(8):1-16.
    [40] 王林,沈忱,张弛,等. 增材制造TiAl合金的研究现状及展望[J]. 电焊机,2020,50(4):1-12.

    WANG L,SHEN S,ZHANG C,et al. Research status and prospects of additive manufacturing TiAl alloy [J]. Welding Machine,2020,50(4):1-12.
    [41] LU D,LIN B,LIU T,et al. Effect of grain structure on fatigue crack propagation behavior of Al-Cu-Li alloys [J]. Journal of Materials Science & Technology,2023,148:75-89.
    [42] 万宏远,刘壮壮,韩泉泉,等. 激光增材制造高温合金抗开裂行为研究进展[J]. 航空科学技术,2022,33(9):26-42.

    WAN H Y,LIU Z Z,HAN Q Q,et al. Research progress on crack resistance behavior of laser additive manufacturing high temperature alloys [J]. Aeronautical Science and Technology,2022,33(9):26-42.
    [43] 杜畅,张津,连勇,等. 激光增材制造残余应力研究现状[J]. 表面技术,2019,48(1):200-207.

    DU C,ZHANG J,LIAN Y,et al. Research status of residual stress in laser additive manufacturing [J]. Surface Technology,2019,48(1):200-207.
  • 加载中
图(6)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  22
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 修回日期:  2023-08-08
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。