6156铝合金的人工时效与蠕变时效研究

晋坤 邓运来 周亮 万里 张新明

晋坤, 邓运来, 周亮, 万里, 张新明. 6156铝合金的人工时效与蠕变时效研究[J]. 航空材料学报, 2011, 31(5): 18-22.
引用本文: 晋坤, 邓运来, 周亮, 万里, 张新明. 6156铝合金的人工时效与蠕变时效研究[J]. 航空材料学报, 2011, 31(5): 18-22.
JIN Kun, DENG Yun-lai, ZHOU Liang, WAN Li, ZHANG Xin-ming. Investigation on Artificial Aging and Creep Aging of 6156 Aluminum Alloy[J]. Journal of Aeronautical Materials, 2011, 31(5): 18-22.
Citation: JIN Kun, DENG Yun-lai, ZHOU Liang, WAN Li, ZHANG Xin-ming. Investigation on Artificial Aging and Creep Aging of 6156 Aluminum Alloy[J]. Journal of Aeronautical Materials, 2011, 31(5): 18-22.

6156铝合金的人工时效与蠕变时效研究

基金项目: 

航空航天用高性能轻合金大型复杂结构件制造的基础研究(2010CB731700)

详细信息
    作者简介:

    晋坤(1987- ),男,硕士研究生;从事航空用铝合金蠕变时效成形技术研究.

  • 中图分类号: TG146.2

Investigation on Artificial Aging and Creep Aging of 6156 Aluminum Alloy

  • 摘要: 采用光学显微及透射电子显微、维氏硬度、拉伸力学性能、电导率测试等技术,研究了试验6156铝合金的人工时效与蠕变时效强化规律与微观组织特征.结果表明,在本文试验的温度(155~175℃)-应力(0~200MPa)时-间(8~14h)范围内,采用不同制度的人工时效和蠕变时效样品的力学性能相差不大,但蠕变时效的析出相数量增多、尺寸变小,力学性能与电导率指标均呈升高趋势.蠕变时效过程中,蠕变第一阶段变形量占总变量的85%以上,增加蠕变应力对蠕变第一阶段变形量的影响十分明显.该合金蠕变时效温度与应力对强度峰值影响不明显,但显著影响蠕变变形量,适合于构件蠕变时效成形.

     

  • [1] HOLMAN M C.Autoclave age forming large aluminium aircraft panels[J].Journal of Mechanical Working Technology,1989,20(9):477-488.
    [2] SALLAH M,PEDDIESON J,FOROUDASTAN S.A mathematical model of autoclave age forming[J].Journal of Materials Process Technology,1991,28(9):211-219.
    [3] ADACHI T,KIMURA S,NAGAYAMA T,et al.Age forming technology for aircraft wing skin[J].Materials Forum,2004,28:202-207.
    [4] STARINK M J,SINCLAIR I,Gao N,et al.Development of new damage tolerant alloys for age-forming[J].Materials Science Forum,2000,396~402:601-606.
    [5] ZHAN L,LIN J G,DEAN T A.A review of creep age forming:Experimentation,modeling and applications,International Journal of Machine Tools and Manufacture[J],2011,51(1):1-17.
    [6] 周亮,邓运来,晋坤,等.预处理对2124铝合金板材蠕变时效微结构与力学性能的影响[J].材料工程,2010,(2):81-85.
    [7] DIF R,BES B,WARNER T,et al.Recent development in AA6056 aluminum alloy used for aerospace[J].Advances in the Metallurgy of Aluminum Alloys,2001:390-397.
    [8] LEQUEU P,LASSINCE P,WARNER T.Aluminum Alloy Development for the Airbus A380 Part 2[J].Advanced Materials & Process,2007,165:41-44.
    [9] SVENNINGSEN G,LARSEN M H,LEIN J E,et al.Intergranular corrosion of extruded AA6000-series model alloys[C]// Proceedings of the 9th International Conference on Aluminum Alloys(ICAA9).Brisbane:Australia Institute of Materials Engineering,2004:818-823.
    [10] DELMAS F,VIVAS M,LOURS P,et al.Straining mechanisms in aluminum alloy 6056.In-situ investigation by transmission electron microscopy[J].Materials Science and Engineering A,2003,340(1/2):286-291.
    [11] WILLIAMS J C,STARKE E A.Progress in structural materials for aerospace systems[J].Acta Material,2003,51(19):5775-5799.
    [12] BAKAVOS D,PRANGNELL P B,DIF R.A comparison of the effects of age forming on the precipitation behavior in 2xxx,6xxx and 7xxx aerospace alloys[J].Materials Forum,2004,28:124-131.
    [13] ROBEY R F,PRANGNELL P B,DIF R.A comparison of the stress relaxation behaviour of three aluminium aerospace alloys for use in age-forming applications[J].Materials Forum,2004,28:132-138.
    [14] EBERL F,GARDINER S,CAMPANILE G,et al.Ageformable panels for commercial aircraft[J].Journal of Aerospace Engineering,2008,222(6):873-886.
    [15] CHAKRABARTI D J,LAUGHLIN D E.Phase relations and precipitation in Al-Mg-Si alloys with Cu additions[J].Progress in Materials Science,2004,49,389-410.
  • 加载中
计量
  • 文章访问数:  1424
  • HTML全文浏览量:  29
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 刊出日期:  2011-10-01

目录

    /

    返回文章
    返回