基于分子动力学对超晶格结构界面热阻的模拟研究

张兴丽 孙兆伟

张兴丽, 孙兆伟. 基于分子动力学对超晶格结构界面热阻的模拟研究[J]. 航空材料学报, 2011, 31(4): 7-10.
引用本文: 张兴丽, 孙兆伟. 基于分子动力学对超晶格结构界面热阻的模拟研究[J]. 航空材料学报, 2011, 31(4): 7-10.
ZHANG Xing-li, SUN Zhao-wei. Molecular Dynamics Simulation on Thermal Boundary Resistance of Superlattice Structure[J]. Journal of Aeronautical Materials, 2011, 31(4): 7-10.
Citation: ZHANG Xing-li, SUN Zhao-wei. Molecular Dynamics Simulation on Thermal Boundary Resistance of Superlattice Structure[J]. Journal of Aeronautical Materials, 2011, 31(4): 7-10.

基于分子动力学对超晶格结构界面热阻的模拟研究

基金项目: 

长江学者和创新团队发展计划项目(IRT0520);国家973基础研究(5131201)

详细信息
    作者简介:

    张兴丽(1981- ),女,博士研究生,主要从事微纳尺度传热研究,(E-mail)cindy07b@126.com.

  • 中图分类号: O369

Molecular Dynamics Simulation on Thermal Boundary Resistance of Superlattice Structure

  • 摘要: 利用非平衡分子动力学方法对S i/Ge超晶格结构的界面热阻进行模拟。模拟结果表明最靠近高温热浴的界面热阻控制整个结构的热传导性能,并且超晶格结构的周期长度以及温度等因素也会对界面热阻产生不同影响。随着周期长度的增大,界面热阻越来越小,超晶格结构的导热能力增强。受声子非弹性散射机制的影响,界面热阻随温度的升高也逐渐减小。

     

  • [1] 吴勇华,杨决宽,陈云飞,等.超品格薄膜热传导的分子 动力学模拟[J].东南大学学报,2003,33(4):468-470.
    [2] 吴国强,孔宪仁,孙兆伟,等.单品硅薄膜法向热导率的 分子动力学模拟[J].哈尔滨工业大学学报.2007,39 (9):1366-1369.
    [3] SHIGEO M.Molecular dynamic method for microscale heat transfer[J].Advances in Numerical Heat Transfer,2000,2(6):189-226.
    [4] SRINIVASAN S,MILLER R S.On parallel nonequilibrium molecular dynamics simulation of heat conduction in heterogeneous materials with three-body potentials:Si/Ge superlattice[J].Number Heat Transfer (B),2007,52:297-321.
    [5] MAITI A,MAHAN G D,PANTELIDES S T.Dynamical simulations of nonequilibrium processes-heat flow and the kapitza resistance across grain boundaries[J].Solid Communications,1997,102(7):17-21.
    [6] MARUYAMA S,KIMURA T.A study on thermal resistance over a solid-liquid interface by molecular dynamics method[J].Thermal Science Engineering,1999,7:63-68.
    [7] TWU C J,HO J R.Molecular dynamics study of energy flow an the kapitza conductance across an interface with imperfection formed by two dielectric thin films[J].Phys Rev (B),2003,67 (20):205-422.
    [8] 李博翰,江建军,朱玲,等.硅锗超品格薄膜界面热传导的分子动力学模拟[J].功能材料与器件学报,2007,13(3):293-296.
    [9] SCHELLING P K,PHILLPOT S R,KEBLINSKI P.Comparison of atomic-level simulation methods for computing thermal conductivity[J].Phys Rev (B),2002,65 (14):144306.
    [10] STILLINGER F,WEBER T.Computer simulation of local order in con densed phases of Silicon[J].Phy Rev (B),1985,31:5262-5271.
    [11] DING K,ANDERSEN H C.Molecular-dynamics simulation of amorphous germanium[J].Phys Rev (B),1986,34:6987-6991.
    [12] LANDRY E S,MCGAUGHEY A J H.Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations[J].Phys Rev (B),2009,80:165304.
    [13] ABRAMSON A R,TIEN C L,MAJUMDAR A.Interface and strain effects on the thermal conductivity of heterostructures:a molecular dynamics study[J].J Heat Transfer,2002,124:963-967.
    [14] SWARTZ E T,POHLR O,Thermal boundary resistance[J].Rev Modern Phys,1989,61:605-668.
    [15] PRASHER R S,PHELAN P E.A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance[J].J Heat Transfer,2001,123:105-112.
    [16] BORCA T,LIU W,LIU J,et al.Thermal conductivity of symmetrically strained Si/Ge superlattices[J].Superlattlces Microstruct,2000,28:199-206.
  • 加载中
计量
  • 文章访问数:  1353
  • HTML全文浏览量:  24
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-14
  • 修回日期:  2010-03-24
  • 刊出日期:  2011-08-01

目录

    /

    返回文章
    返回