Ballistic impact behavior of thin nickel-base alloy plates at different temperatures
-
摘要: 为研究航空发动机机匣在高温下的包容性能力,通过实验和数值模拟研究25 ℃和600 ℃下GH4169合金薄板受球型子弹冲击后的变形行为。弹道冲击实验通过轻气炮实施,子弹以不同初始速率冲击靶板。分析温度和冲击速率对靶板的变形、临界击穿速率、破坏变形模式以及能量吸收的影响。结果表明:高温下靶板的变形更大,靶板被击穿所吸收的能量更小,临界击穿速率更小;高温下靶板被穿透后由弯曲作用引起的花瓣状变形更明显。数值模拟研究通过有限元软件LS-DYNA实施,数值模拟中选用Johnson-Cook本构模型。采用高温分离式霍普金森压杆(SHPB)实验技术对GH4169高温合金进行测试,获得了材料在高温高应变率下的力学特性并拟合了Johnson-Cook本构模型参数。数值模拟研究的结果和实验结果进行了对比,显示了良好的一致性。Abstract: To study the aeroengine containment capability in high temperature, experiments and numerical simulations of the spherical nosed projectile impacting thin plate under 25 ℃ and 600 ℃ were performed. Experiments were conducted by using a gas gun. Target plates were impacted by bullets with different initial velocities. The effect of temperature and initial velocity on the deformation, failure pattern and energy absorption of the plate were analyzed. The results show that at higher temperature, the deformation of the target plates is greater, the energy absorbed by the target plates is smaller and the critical ballistic velocities are smaller . The petal deformation of the target plate caused by bending is more obvious under 600 ℃. Numerical simulations of the impact were conducted by using an explicit dynamics FE code (LS-DYNA). The Johnson-Cook material model was used to carry out the analysis. The Johnson-Cook material model parameters were obtained by the separated Hopkinson pressure bar (SHPB) experiment at high temperature. The results obtained from the numerical simulations were compared with those from the experiments. Good correlation is found between experiments and numerical simulations.
-
表 1 GH4169合金靶板的弹道冲击实验测试结果
Table 1. Testing results of ballistic impact experiment of GH4169 alloy
Temperature/℃ Vi/(m·s–1) Vr/(m·s–1) Vd/(m·s–1) Ea/J ht/mm 25 128.9 0 128.9 58.627 6.9 25 137.5 0 137.5 66.711 7.6 25 142 0 142 71.149 8.5 25 143.87 66.3 77.57 51.677 10.5 25 146.86 77.8 69.06 54.745 10.2 25 146.9 79.7 67.2 53.73 10.3 25 148.9 86.2 62.7 52.013 9.7 25 171.15 124.5 46.65 48.665 9 25 187 142.9 44.1 51.335 8.6 600 110.43 0 110.43 43.029 7 600 114.7 0 114.7 46.421 7.2 600 123.66 0 123.66 53.957 8.3 600 124.6 40.1 84.5 49.107 11.5 600 127.48 59.7 67.78 44.766 11.3 600 129.3 63 66.3 44.987 10.9 600 134.9 83.3 51.6 39.728 10.1 600 141.3 105.3 36 31.324 10.1 600 158.1 123.2 34.9 34.641 9.8 600 176.2 142.1 34.1 38.298 9.4 Temperature/℃ E/GPa ν ρ/(kg·m–3) Tm/℃ Tr/℃ Cp/(J·kg–1·K–1) 25 205.0 0.321 8.24×103 1800 25 440 600 150.8 0.350 8.24×103 1800 25 539 表 3 不同温度下GH4169合金的Johnson-Cook 本构模型参数
Table 3. Parameters of Johnson-Cook constitutive model of GH4169 alloy at different temperatures
Temperature/℃ A/MPa B/MPa C n m $\mathop {{\varepsilon _0}}\limits^ {\!\! \cdot} $ /s–125 1290 1100 0.01 0.510 1.05 1500 600 1063.5 681.1 0.104 0.508 2.5 1500 表 4 GH4169合金Johnson-Cook失效模型参数
Table 4. Parameters of Johnson-Cook damage model of GH4169 alloy
D1 D2 D3 D4 D5 0.02 0.75 –1.1 0.0255 –0.275 表 5 GH4169 合金Gruneisen状态方程参数
Table 5. Gruneisen equation of state parameters of GH4169 alloy
c/(m·s–1) S1 S2 S3 γ α 4578 1.33 0 0 1.67 0.43 表 6 实验与数值模拟预测25 ℃和600 ℃下的临界击穿速率
Table 6. Tested and predicted critical ballistic velocities(Vc)at 25 ℃ and 600 ℃
Temperature/℃ Vc/(m·s–1) Deviation/% Experimental Numerical 25 143 146.3 2.31 600 124 131.9 6.37 -
[1] 宣海军,洪伟荣,吴荣仁. 航空发动机涡轮叶片包容试验及数值模拟[J]. 航空动力学报,2005,20(5):762-767 doi: 10.3969/j.issn.1000-8055.2005.05.010XUAN H J,HONG W R,WU R R. Aero-engine turbine blade containment tests and numerical simulation[J]. Journal of Aerospace Power,2005,20(5):762-767.) doi: 10.3969/j.issn.1000-8055.2005.05.010 [2] 范志强. 航空发动机机匣包容性理论和试验研究[D]. 南京航空航天大学, 2006.FAN Z Q. Theory and experimental study on aeroengine casing containment[D]. Nanjing University of Aeronautics and Astronautics, 2006. [3] GUPTA N K,IQBAL M A,SEKHON G S. Effect of pro-jectile nose shape, impact velocity and target thickness on deformation behavior of aluminum plates[J]. International Journal of Impact Engineering,2007,44(10):3411-3439 [4] LUNDIN S J, MUELLER R B. Advanced aircraft materials, engine debris penetration testing[R]. Washington, DC, US: DOT/FAA/AR-03/37, Department of Transportation, Federal Aviation Administration, Office of Aviation Research, 2005. [5] KELLEY S, JOHNSON G. Statistical testing of air craft materials for transport airplane rotor burst fragment shielding[R]. Washington, DC, US: DOT/FAA/AR-06/9, Department of Transportation, Federal Aviation Administration, Office of Aviation Research and Development, 2006. [6] ZHANG T,CHEN W,GUAN Y,et al. Study on titanium alloy TC4 ballistic penetration resistance. Part I: ballistic impact tests[J]. Chinese J Aeronaut,2012,25:388-395 doi: 10.1016/S1000-9361(11)60402-0 [7] ZHANG T,CHEN W,GUAN Y,et al. Study on ballistic penetration resistance of titanium alloy TC4. Part II: Numerical analysis[J]. Chinese J Aeronaut,2012,26:606-613 [8] PEREIRA J M,LERCH B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications[J]. International Journal of Impact Engineering,2001,25(8):715-733 doi: 10.1016/S0734-743X(01)00018-5 [9] LIU L L,ZHAO Z H,CHEN W,et al. Ballistic impact be haviour of stiffened aluminium plates for gas turbine engine containment system[J]. International Journal of Crashworthiness,2017,22(5):1-12 [10] 何庆,宣海军,廖连芳,等. 薄靶板受叶片形弹体撞击的数值仿真研究[J]. 工程力学,2010,27(4):234-239HE Q,XUAN H J,LIAO L F,et al. Numerical simulation of a thin plate impacted by blade projectile[J]. Journal of Engineering Mechanics,2010,27(4):234-239.) [11] BUYUK M, KAN S, LOIKKENAN M J. Explicit finite element analysis of 2024-T3/T351 aluminum material under impact loading for airplane engine containment and fragment shielding[C]//Earth & Space 2008@sEngineering, Science, Construction, and Operations in Challenging Environments.[S.l]: ASCE, 2014: 1-15. [12] 齐欢. INCONEL 718(GH4169)高温合金的发展与工艺[J]. 材料工程,2012(8):92-100 doi: 10.3969/j.issn.1001-4381.2012.08.020QI H. Review of INCONEL 718 alloy: its history, properties, processing and developing substitutes[J]. Journal of Materials Engineering,2012(8):92-100.) doi: 10.3969/j.issn.1001-4381.2012.08.020 [13] ZUKAS J A. High velocity lmpact dynamics[J]. Chemical Engineering Science,1990,59:525-541 [14] LEVY N,GOLDSMITH W. Normal impact and per foration of thin plates by hemispherically-tipped projectiles—I:analytical considerations[J]. International Journal of Impact Engineering,1984,2(3):209-229 doi: 10.1016/0734-743X(84)90006-X [15] RUSINEK A,RODRIGUZE-MARTINEZ J A,ZAERA R,et al. Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles[J]. International Journal of Impact Engineering,2009,36(4):565-587 doi: 10.1016/j.ijimpeng.2008.09.004 [16] GUPTA N K,IQBAL M A,SEKHON G S. Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates[J]. International Journal of Solids & Structures,2007,44(10):3411-3439 [17] ERICE E B. Flow and fracture behaviour of high performance alloys[M]. [S.l]: ETSI Caminos, Canales y Puertos(UPM), 2012. [18] 于慧臣, 吴学仁. 航空发动机设计用材料数据手册[M]. 北京: 航空工业出版社, 2014. -