镍基合金薄板不同温度下的弹道冲击行为

刘焦 郑百林 杨彪 俞晓强 张锴 史同承

刘焦, 郑百林, 杨彪, 俞晓强, 张锴, 史同承. 镍基合金薄板不同温度下的弹道冲击行为[J]. 航空材料学报, 2019, 39(1): 79-88. doi: 10.11868/j.issn.1005-5053.2018.000045
引用本文: 刘焦, 郑百林, 杨彪, 俞晓强, 张锴, 史同承. 镍基合金薄板不同温度下的弹道冲击行为[J]. 航空材料学报, 2019, 39(1): 79-88. doi: 10.11868/j.issn.1005-5053.2018.000045
Jiao LIU, Bailin ZHENG, Biao YANG, Xiaoqiang YU, Kai ZHANG, Tongcheng SHI. Ballistic impact behavior of thin nickel-base alloy plates at different temperatures[J]. Journal of Aeronautical Materials, 2019, 39(1): 79-88. doi: 10.11868/j.issn.1005-5053.2018.000045
Citation: Jiao LIU, Bailin ZHENG, Biao YANG, Xiaoqiang YU, Kai ZHANG, Tongcheng SHI. Ballistic impact behavior of thin nickel-base alloy plates at different temperatures[J]. Journal of Aeronautical Materials, 2019, 39(1): 79-88. doi: 10.11868/j.issn.1005-5053.2018.000045

镍基合金薄板不同温度下的弹道冲击行为

doi: 10.11868/j.issn.1005-5053.2018.000045
基金项目: 上海市航空发动机领域联合创新计划项目(AR905)
详细信息
    通讯作者:

    郑百林(1966—),男,博士,教授,主要从事固体力学、冲击力学、金属材料的力学行为研究,(E-mail)blzheng@tongji.edu.cn

  • 中图分类号: TG146.1+5

Ballistic impact behavior of thin nickel-base alloy plates at different temperatures

  • 摘要: 为研究航空发动机机匣在高温下的包容性能力,通过实验和数值模拟研究25 ℃和600 ℃下GH4169合金薄板受球型子弹冲击后的变形行为。弹道冲击实验通过轻气炮实施,子弹以不同初始速率冲击靶板。分析温度和冲击速率对靶板的变形、临界击穿速率、破坏变形模式以及能量吸收的影响。结果表明:高温下靶板的变形更大,靶板被击穿所吸收的能量更小,临界击穿速率更小;高温下靶板被穿透后由弯曲作用引起的花瓣状变形更明显。数值模拟研究通过有限元软件LS-DYNA实施,数值模拟中选用Johnson-Cook本构模型。采用高温分离式霍普金森压杆(SHPB)实验技术对GH4169高温合金进行测试,获得了材料在高温高应变率下的力学特性并拟合了Johnson-Cook本构模型参数。数值模拟研究的结果和实验结果进行了对比,显示了良好的一致性。

     

  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental setup

    图  2  GH4169合金靶板弹道冲击VrVi

    Figure  2.  Ballistic impact Vi and Vr of GH4169 alloy plate

    图  3  GH4169合金靶板弹道冲击ViEa

    Figure  3.  Ballistic impact Vi and Ea of GH4169 alloy plate

    图  4  25 ℃下GH4169合金靶板变形图(Vi = 148.9 m/s) (a)正面;(b)反面

    Figure  4.  Deformation diagrams of GH4169 alloy plate at 25 ℃(Vi = 148.9 m/s) (a)front;(b)back

    图  5  600 ℃下GH4169合金靶板变形图(Vi = 141.3 m/s) (a)正面;(b)反面

    Figure  5.  Deformation diagrams of GH4169 alloy plate at 600 ℃(Vi = 141.3 m/s) (a)front;(b)back

    图  6  带同步系统的高温霍普金森压杆实验装置

    Figure  6.  Experiment device of high temperature Hopkinson pressure bar with synchronous system

    图  7  GH4169合金Johnson-Cook本构方程拟合结果

    Figure  7.  Fitting results with Johnson-Cook constitutive equation of GH4169 alloy (a)(25 ℃,200 ℃,400 ℃)/1500 s–1;(b)(25 ℃,200 ℃,400 ℃)/3000 s–1;(c)(600 ℃,700 ℃)/1500 s–1;(d)(600 ℃,700 ℃)/3000 s–1

    图  8  数值模拟研究球型子弹以不同冲击速率垂直撞击GH4169合金靶板ViVr关系图

    Figure  8.  Relation between Vi and Vr by numerical simulation of GH4169 alloy plate impacted by spherical bullets with different velocities

    图  9  数值模拟研究冲击GH4169合金材料靶板EahtVi的关系

    Figure  9.  Relation of Ea and ht versus Vi of impacting GH4169 alloy plate by numerical simulation (a)600 ℃ ;(b)25 ℃

    图  10  实验和数值模拟研究冲击GH4169合金材料靶板VrVi变化的关系图

    Figure  10.  Relation between Vr and Vi by experimental and numerical simulation of impacting GH4169 alloy plate

    图  11  实验和数值模拟研究冲击GH4169合金材料靶板VdVi变化的关系图

    Figure  11.  Relation between Vd and Vi by experimental and numerical simulation of impacting GH4169 alloy plate (a)600 ℃;(b)25 ℃

    图  12  25 ℃室温下GH4169合金材料靶板变形过程图(Vi = 148.9 m/s)

    Figure  12.  Deformation process of GH4169 alloy plate at 25 ℃(Vi = 148.9 m/s) (a)50 μs;(b)100 μs;(c)200 μs

    图  13  600 ℃高温下GH4169合金材料靶板变形过程图(Vi = 141.3 m/s)

    Figure  13.  Deformation process of GH4169 alloy plate at 600 ℃(Vi = 141.3 m/s) (a)50 μs;(b)100 μs;(c)200 μs

    表  1  GH4169合金靶板的弹道冲击实验测试结果

    Table  1.   Testing results of ballistic impact experiment of GH4169 alloy

    Temperature/℃Vi/(m·s–1Vr/(m·s–1Vd/(m·s–1Ea/Jht/mm
    25 128.9 0 128.9 58.627 6.9
    25 137.5 0 137.5 66.711 7.6
    25 142 0 142 71.149 8.5
    25 143.87 66.3 77.57 51.677 10.5
    25 146.86 77.8 69.06 54.745 10.2
    25 146.9 79.7 67.2 53.73 10.3
    25 148.9 86.2 62.7 52.013 9.7
    25 171.15 124.5 46.65 48.665 9
    25 187 142.9 44.1 51.335 8.6
    600 110.43 0 110.43 43.029 7
    600 114.7 0 114.7 46.421 7.2
    600 123.66 0 123.66 53.957 8.3
    600 124.6 40.1 84.5 49.107 11.5
    600 127.48 59.7 67.78 44.766 11.3
    600 129.3 63 66.3 44.987 10.9
    600 134.9 83.3 51.6 39.728 10.1
    600 141.3 105.3 36 31.324 10.1
    600 158.1 123.2 34.9 34.641 9.8
    600 176.2 142.1 34.1 38.298 9.4
    下载: 导出CSV

    表  2  GH4169合金在不同温度下的基本参数[18]

    Table  2.   Basic parameters of GH4169 alloy at different temperatures[18]

    Temperature/℃E/GPaνρ/(kg·m–3Tm/℃ Tr/℃ Cp/(J·kg–1·K–1
    25205.00.3218.24×103180025440
    600150.80.3508.24×103180025539
    下载: 导出CSV

    表  3  不同温度下GH4169合金的Johnson-Cook 本构模型参数

    Table  3.   Parameters of Johnson-Cook constitutive model of GH4169 alloy at different temperatures

    Temperature/℃A/MPaB/MPaCnm$\mathop {{\varepsilon _0}}\limits^ {\!\! \cdot} $/s–1
    25129011000.010.5101.051500
    6001063.5681.10.1040.5082.51500
    下载: 导出CSV

    表  4  GH4169合金Johnson-Cook失效模型参数

    Table  4.   Parameters of Johnson-Cook damage model of GH4169 alloy

    D1D2D3D4D5
    0.020.75–1.10.0255–0.275
    下载: 导出CSV

    表  5  GH4169 合金Gruneisen状态方程参数

    Table  5.   Gruneisen equation of state parameters of GH4169 alloy

    c/(m·s–1S1S2S3γα
    45781.33001.670.43
    下载: 导出CSV

    表  6  实验与数值模拟预测25 ℃和600 ℃下的临界击穿速率

    Table  6.   Tested and predicted critical ballistic velocities(Vc)at 25 ℃ and 600 ℃

    Temperature/℃Vc/(m·s–1 Deviation/%
    Experimental Numerical
    25143146.3 2.31
    600124131.9 6.37
    下载: 导出CSV
  • [1] 宣海军,洪伟荣,吴荣仁. 航空发动机涡轮叶片包容试验及数值模拟[J]. 航空动力学报,2005,20(5):762-767 doi: 10.3969/j.issn.1000-8055.2005.05.010

    XUAN H J,HONG W R,WU R R. Aero-engine turbine blade containment tests and numerical simulation[J]. Journal of Aerospace Power,2005,20(5):762-767.) doi: 10.3969/j.issn.1000-8055.2005.05.010
    [2] 范志强. 航空发动机机匣包容性理论和试验研究[D]. 南京航空航天大学, 2006.

    FAN Z Q. Theory and experimental study on aeroengine casing containment[D]. Nanjing University of Aeronautics and Astronautics, 2006.
    [3] GUPTA N K,IQBAL M A,SEKHON G S. Effect of pro-jectile nose shape, impact velocity and target thickness on deformation behavior of aluminum plates[J]. International Journal of Impact Engineering,2007,44(10):3411-3439
    [4] LUNDIN S J, MUELLER R B. Advanced aircraft materials, engine debris penetration testing[R]. Washington, DC, US: DOT/FAA/AR-03/37, Department of Transportation, Federal Aviation Administration, Office of Aviation Research, 2005.
    [5] KELLEY S, JOHNSON G. Statistical testing of air craft materials for transport airplane rotor burst fragment shielding[R]. Washington, DC, US: DOT/FAA/AR-06/9, Department of Transportation, Federal Aviation Administration, Office of Aviation Research and Development, 2006.
    [6] ZHANG T,CHEN W,GUAN Y,et al. Study on titanium alloy TC4 ballistic penetration resistance. Part I: ballistic impact tests[J]. Chinese J Aeronaut,2012,25:388-395 doi: 10.1016/S1000-9361(11)60402-0
    [7] ZHANG T,CHEN W,GUAN Y,et al. Study on ballistic penetration resistance of titanium alloy TC4. Part II: Numerical analysis[J]. Chinese J Aeronaut,2012,26:606-613
    [8] PEREIRA J M,LERCH B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications[J]. International Journal of Impact Engineering,2001,25(8):715-733 doi: 10.1016/S0734-743X(01)00018-5
    [9] LIU L L,ZHAO Z H,CHEN W,et al. Ballistic impact be haviour of stiffened aluminium plates for gas turbine engine containment system[J]. International Journal of Crashworthiness,2017,22(5):1-12
    [10] 何庆,宣海军,廖连芳,等. 薄靶板受叶片形弹体撞击的数值仿真研究[J]. 工程力学,2010,27(4):234-239

    HE Q,XUAN H J,LIAO L F,et al. Numerical simulation of a thin plate impacted by blade projectile[J]. Journal of Engineering Mechanics,2010,27(4):234-239.)
    [11] BUYUK M, KAN S, LOIKKENAN M J. Explicit finite element analysis of 2024-T3/T351 aluminum material under impact loading for airplane engine containment and fragment shielding[C]//Earth & Space 2008@sEngineering, Science, Construction, and Operations in Challenging Environments.[S.l]: ASCE, 2014: 1-15.
    [12] 齐欢. INCONEL 718(GH4169)高温合金的发展与工艺[J]. 材料工程,2012(8):92-100 doi: 10.3969/j.issn.1001-4381.2012.08.020

    QI H. Review of INCONEL 718 alloy: its history, properties, processing and developing substitutes[J]. Journal of Materials Engineering,2012(8):92-100.) doi: 10.3969/j.issn.1001-4381.2012.08.020
    [13] ZUKAS J A. High velocity lmpact dynamics[J]. Chemical Engineering Science,1990,59:525-541
    [14] LEVY N,GOLDSMITH W. Normal impact and per foration of thin plates by hemispherically-tipped projectiles—I:analytical considerations[J]. International Journal of Impact Engineering,1984,2(3):209-229 doi: 10.1016/0734-743X(84)90006-X
    [15] RUSINEK A,RODRIGUZE-MARTINEZ J A,ZAERA R,et al. Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles[J]. International Journal of Impact Engineering,2009,36(4):565-587 doi: 10.1016/j.ijimpeng.2008.09.004
    [16] GUPTA N K,IQBAL M A,SEKHON G S. Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates[J]. International Journal of Solids & Structures,2007,44(10):3411-3439
    [17] ERICE E B. Flow and fracture behaviour of high performance alloys[M]. [S.l]: ETSI Caminos, Canales y Puertos(UPM), 2012.
    [18] 于慧臣, 吴学仁. 航空发动机设计用材料数据手册[M]. 北京: 航空工业出版社, 2014.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  2789
  • HTML全文浏览量:  1266
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-23
  • 修回日期:  2018-05-30
  • 网络出版日期:  2019-01-21
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回