Co含量对DD15单晶高温合金组织和持久性能的影响

史振学 刘世忠 岳晓岱 王志成 李嘉荣

史振学, 刘世忠, 岳晓岱, 王志成, 李嘉荣. Co含量对DD15单晶高温合金组织和持久性能的影响[J]. 航空材料学报, 2020, 40(5): 38-44. doi: 10.11868/j.issn.1005-5053.2020.000014
引用本文: 史振学, 刘世忠, 岳晓岱, 王志成, 李嘉荣. Co含量对DD15单晶高温合金组织和持久性能的影响[J]. 航空材料学报, 2020, 40(5): 38-44. doi: 10.11868/j.issn.1005-5053.2020.000014
Zhenxue SHI, Shizhong LIU, Xiaodai YUE, Zhicheng WANG, Jiarong LI. Effect of Co content on microstructure and stress rupture properties of DD15 single crystal superalloy[J]. Journal of Aeronautical Materials, 2020, 40(5): 38-44. doi: 10.11868/j.issn.1005-5053.2020.000014
Citation: Zhenxue SHI, Shizhong LIU, Xiaodai YUE, Zhicheng WANG, Jiarong LI. Effect of Co content on microstructure and stress rupture properties of DD15 single crystal superalloy[J]. Journal of Aeronautical Materials, 2020, 40(5): 38-44. doi: 10.11868/j.issn.1005-5053.2020.000014

Co含量对DD15单晶高温合金组织和持久性能的影响

doi: 10.11868/j.issn.1005-5053.2020.000014
基金项目: 国家科技重大专项(2017-Ⅵ-0002-0071)
详细信息
    通讯作者:

    史振学(1975—),男,博士,高级工程师,研究方向为单晶高温合金,联系地址:北京航空材料研究院先进高温结构材料重点实验室(100095),E-mail:shizhenxue@126.com

  • 中图分类号: TG132.3+2

Effect of Co content on microstructure and stress rupture properties of DD15 single crystal superalloy

  • 摘要: 在真空定向凝固炉中制备Co含量分别为9%和12%的DD15单晶高温合金,保持其他合金元素的含量不变,研究Co含量对单晶高温合金组织、组织稳定性和980 ℃/300 MPa条件下持久性能的影响。结果表明:随着Co含量增加,合金的一次枝晶间距增加,共晶含量减少;合金的γ′相尺寸无明显变化,立方化程度稍有减小,体积分数减少;合金的组织稳定性提高,降低了合金的持久性能。

     

  • 图  1  不同Co含量合金的铸态枝晶组织

    Figure  1.  As-cast dendritic micostructures of the alloys with different Co contents: (a)9%Co;(b)12%Co

    图  2  不同Co含量合金热处理组织 (a)枝晶干,9%Co;(b)枝晶间,9%Co;(c)枝晶干,12%Co;(d)枝晶间,12%Co

    Figure  2.  Micostructures of the alloys with different Co contents after the heat treatment (a)dendritic core,9%Co;(b)interdendritic,9%Co;(c)dendritic core,12%Co;(d)interdendritic,12%Co

    图  3  9%Co合金980 ℃长期时效组织 (a)枝晶干,400 h;(b)枝晶间,400 h;(c)枝晶干,800 h;(d)枝晶间,400 h;(e)枝晶干,2000 h;(f)枝晶间,2000 h

    Figure  3.  Microstructures of 9%Co alloy after long term aging at 980 ℃ (a)dendritic core,400 h;(b)interdendritic,400 h;(c)dendritic core,800 h;(d)interdendritic,800 h;(e)dendritic core,2000 h;(f)interdendritic,2000 h

    图  4  9%Co量合金980 ℃长期时效2000 h析出的TCP相 (a)低倍;(b)高倍

    Figure  4.  TCP precipitates in the microstructures of 9%Co alloy after long term aging at 980 ℃ for 2000 h (a)low magnification;(b)high magnification

    图  5  12%Co合金980 ℃长期时效组织 (a)枝晶干,400 h;(b)枝晶间,400 h;(c)枝晶干,800 h;(d)枝晶间,400 h;(e)枝晶干,2000 h;(f)枝晶间,2000 h

    Figure  5.  Microstructures of 12%Co alloy after long term aging at 980 ℃ (a)dendritic core,400 h;(b)interdendritic,400 h;(c)dendritic core,800 h;(d)interdendritic,800 h;(e)dendritic core,2000 h;(f)interdendritic,2000 h

    图  6  合金中各平衡相与Co含量的关系 (a)1100 ℃;(b)1140 ℃

    Figure  6.  Relationship between every stable phase and Co content in the alloy (a)1100 ℃;(b)1140 ℃

    表  1  不同Co含量合金的化学成分(质量分数/%)

    Table  1.   Nominal chemical compositions of the alloys with different Co contents(mass fraction%).

    AlloyCrCoMoWTaReRuNbAlHfCNi
    9%Co2-4 91-36-87-93-52-40.55-60.1-0.30.008Bal.
    12%Co2-4121-36-87-93-52-40.55-60.1-0.30.008Bal.
    下载: 导出CSV

    表  2  9% Co 合金析出TCP相的化学成分(质量分数/%)

    Table  2.   Chemical composition of TCP phase in 9% Co alloy(mass fraction/%)

    AlCrCoMoReWTaRuNi
    4.52.66.82.921.411.74.12.8Bal.
    下载: 导出CSV

    表  3  Co 含量对合金980 ℃/300 MPa条件下持久性能的影响

    Table  3.   Effect of Co content on stress rupture properties of the alloy at 980 ℃/300 MPa

    Alloyt/hδ/%
    9%Co328.331.2
    12%Co272.633.5
    下载: 导出CSV
  • [1] CARON P,KHAN T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerospace Science Technology,1999,3:513-523. doi: 10.1016/S1270-9638(99)00108-X
    [2] 史振学,刘世忠,李嘉荣. 一种第四代单晶高温合金不同温度的拉伸性能各向异性[J]. 航空材料学报,2019,39(4):78-85.

    SHI Z X,LIU S Z,LI J R. Tensile anisotropy of the fourth generation single crystal superalloy at different temperatures[J]. Journal of Aeronautical Materials,2019,39(4):78-85.)
    [3] 史振学,刘世忠,赵金乾,等. 基于不同原始组织预设变形第四代单晶高温合金的再结晶行为[J]. 材料工程,2019,47(5):107-114. doi: 10.11868/j.issn.1001-4381.2018.001095

    SHI Z X,LIU S Z,ZHAO J Q,et al. Recrystallization behavior of the fourth generation single crystal superalloy based on different original microstructure preset strain[J]. Journal of Materials Engineering,2019,47(5):107-114.) doi: 10.11868/j.issn.1001-4381.2018.001095
    [4] 郑运荣, 张德堂. 高温合金与钢的彩色金相研究[M]. 北京: 国防工业出版社, 1999: 6-7.

    ZHENG Y R, ZHANG D T. Color metallographic investigation of superalloy and steels[M]. Beijing: National Defence Industry Press, 1999: 6-7.
    [5] 李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术(上)[M]. 北京, 国防工业出版社, 2012: 19-20.

    LI J R, XIONG J C, TANG D Z. Advanced high temperature structure materials and technology[M]. Beijing, National Defence Industry Press, 2012: 19-20.
    [6] 阳大云,金涛,赵乃仁,等. 钴、钨和钛对镍基单晶高温合金铸态组织的影响[J]. 航空材料学报,2003,23(增刊 1):17-20.

    YANG D Y,JIN T,ZHAO N R,et al. The influence of cobalt,tungsten,and titanium on the as-east microstructure of single crystal nickel-base superalloys[J]. Journal of Aeronautical Materials,2003,23(Suppl 1):17-20.)
    [7] 阳大云,张炫,金涛,等. 钴、钨和钛对镍基单晶高温合金持久性能的影响[J]. 稀有金属材料与工程,2005,34(8):1295-1298. doi: 10.3321/j.issn:1002-185X.2005.08.029

    YANG D Y,ZHANG X,JIN T,et al. The influence of cobalt,tungsten,and titanium on stress-rupture properties of Nickel-base single crystal superalloy[J]. Rare Metal Materials and Engineering,2005,34(8):1295-1298.) doi: 10.3321/j.issn:1002-185X.2005.08.029
    [8] LIU J L,ZHANG J,MENG J,et al. The effect of Co on the microstructure and stress rupture properties of a single crystal superalloy[J]. Materials Research Innovations,2014,S4:414-420.
    [9] WANG W Z, JIN T, ZHAO N R, et al. Effect of cobalt on chemical segregation and solution process in Re-containing single crystal superalloys[C]//Prceedings of the 2006 Beijing International Materials Week. HAN Y F, ZHANG X M, LONG S Y. eds. Beijing: [s.n.], 2006: 1978-1981.
    [10] ACHARYA M V,FUCHS G E. The effect of long term thermal exposures on the microstructure and properties of CMSX-10 single crystal superalloys[J]. Materials Science and Engineering:A,2004,381:143-153. doi: 10.1016/j.msea.2004.04.001
    [11] SHI Z X,LI J R,LIU S Z. Effect of long term aging on microstructure and stress rupture properties of a nickel based single crystal superalloy[J]. Progress in Natural Science:Materials International,2012,22(5):426-4323. doi: 10.1016/j.pnsc.2012.10.004
    [12] HAN Y F, MA W Y, DONG Z Q, et al. Effect of ruthenium on microstructure and stress rupture properties of a single crystal nickel-base superalloy[C]//REED R C, GREEN K A, CARON P, et al. Superalloys2008. Pennsylvania, PA, US: TMS, 2008: 91-97.
    [13] ERICKSON G L. The development and application of CMSX-10[C]//KISSINGER R D, DEYE D J, ANTON D L, et al. Superalloys1996. Warrendale, PA, US: TMS, 1996: 35-44.
    [14] WALSTON W S, O'HARA K, ROSS E W, et al. RenéN6: third generation single crystal superalloy[C]//KISSINGER R D, DEYE D J, ANTON D L, et al. Superalloys1996. Warrendale, PA, US: TMS, 1996: 27-34.
    [15] WALSTON S, CETEL A, MACKAY R, et al. Joint development of the fourth generation single crystal superalloy[C]//GREEN K A, POLLOK T M, HARADA H, et al. Superalloys 2004. Pennsylvania, PA, US: TMS, 2004: 15-24.
    [16] ARGENCE D, VERNAULT C, DESVALLEES Y, et al. MC-NG: generation single crystal superalloy for future aeronautical turbine blades and vanes[C]//POLLOCK T M, KISSINGER R D, BOWMAN R R, et al. Superalloys 2000, Warrendale, PA, US: TMS, 2000: 829-837.
    [17] ZHANG J X,MURAKUMO T,KOIZUMI Y,et al. Interfacial dislocation networks strengthening the fourth-generation single-crystal TMS-138 superalloy[J]. Metallurgical and Materials Transactions A,2002,33:3741-3746. doi: 10.1007/s11661-002-0246-7
    [18] GUNGOR M. A statistically significant experimental technique for investigating microsegregation in cast alloys[J]. Metallurgical and Materials Transactions A,1989,20(11):2529-2533. doi: 10.1007/BF02666687
    [19] CARROLL L J,FENG Q,MANSFIELD J F,et al. Elemental partitioning in Ru-containing Nickel-base single crystal superalloys[J]. Materials Science and Engineering:A,2009,457:292-299.
    [20] YEH A C,TIN S. Effect of Ru on the high temperature phase stability of Ni-base single crystal superalloys[J]. Metallurgical and Materials Transactions A,2006,37:2621-2631. doi: 10.1007/BF02586097
    [21] WILSON B C,CUTLER E R,FUCHS G E. Effect of solidification parameters on the microstructures and properties of CMSX-10[J]. Materials Science and Engineering:A,2008,479:356-364. doi: 10.1016/j.msea.2007.07.030
    [22] ZHANG W M,DU W,FU H Z. Effect of solidification condition on microstructure and mechanical properties of single crystal superalloy[J]. Journal Material Science and Technology,2001,17(1):89-90.
    [23] LIU C B,SHEN J,ZHANG J,et al. Effect of withdrawal rates on microstructure and creep strength of a single crystal superalloy processed by LMC[J]. Journal Material Science and Technology,2010,26(4):306-310. doi: 10.1016/S1005-0302(10)60050-3
    [24] JACKON J J,DONACHIE M J,HENRICKS R J. Effect of amount(Vf)of fine γ' particle on creep property for DS MarM200 +Hf superalloy[J]. Metallurgical Transaction A,1977,8(10):1-9.
    [25] HINO T, KOBAYASHI T, KOIZUMI Y. Development of a new single crystal superalloy for industrial gas turbines[C]//POLLOCK T M, KISSINGER R D, BOWMAN R R, et al. Superalloys 2000. Warrendale, PA, US: TMS, 2000: 729-736.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  3677
  • HTML全文浏览量:  2132
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-03
  • 修回日期:  2020-03-29
  • 网络出版日期:  2020-08-28
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回