难熔高熵合金成分设计微观组织及性能研究进展

武俊霞 李培友 董洪峰 刘亚玲 张薇 王琳 王永善

武俊霞, 李培友, 董洪峰, 刘亚玲, 张薇, 王琳, 王永善. 难熔高熵合金成分设计微观组织及性能研究进展[J]. 航空材料学报, 2022, 42(6): 33-47. doi: 10.11868/j.issn.1005-5053.2021.000205
引用本文: 武俊霞, 李培友, 董洪峰, 刘亚玲, 张薇, 王琳, 王永善. 难熔高熵合金成分设计微观组织及性能研究进展[J]. 航空材料学报, 2022, 42(6): 33-47. doi: 10.11868/j.issn.1005-5053.2021.000205
WU Junxia, LI Peiyou, DONG Hongfeng, LIU Yaling, ZHANG Wei, WANG Lin, WANG Yongshan. Research progress in composition design, microstructure and properties of refractory high entropy alloys[J]. Journal of Aeronautical Materials, 2022, 42(6): 33-47. doi: 10.11868/j.issn.1005-5053.2021.000205
Citation: WU Junxia, LI Peiyou, DONG Hongfeng, LIU Yaling, ZHANG Wei, WANG Lin, WANG Yongshan. Research progress in composition design, microstructure and properties of refractory high entropy alloys[J]. Journal of Aeronautical Materials, 2022, 42(6): 33-47. doi: 10.11868/j.issn.1005-5053.2021.000205

难熔高熵合金成分设计微观组织及性能研究进展

doi: 10.11868/j.issn.1005-5053.2021.000205
基金项目: 陕西省自然科学基础研究计划青年项目(2020JQ-870);陕西省教育厅专项科研计划项目(20JK0563)
详细信息
    通讯作者:

    李培友(1977—),男,博士,主要从事高熵合金、非晶合金和生物医用Ti合金的研究工作,联系地址:陕西省汉中市汉台区陕西理工大学南区材料科学与工程学院(723001),E-mail:lipeiyou112@163.com

  • 中图分类号: TG146.4

Research progress in composition design, microstructure and properties of refractory high entropy alloys

  • 摘要: 高熵合金被定义为含有4种或4种以上主要元素的合金,主要元素的原子分数大于5%且不超过35%,具有高强度、高耐磨性、高耐腐蚀性等优异的性能。难熔高熵合金是基于难熔元素的高熵合金而设计开发的一种新型高温合金,其在航空航天、石油化工等领域具有广阔的应用前景,有望取代传统的高温合金。本文综述了难熔高熵合金一般是从元素选择和添加微量的元素等方面进行成分设计,其相组成有单相组织和双相组织等结构,研究了难熔高熵合金的制备方法和性能特点,并且在文章最后指出了难熔高熵合金目前所面临的问题与挑战。希望通过本文综述,可以为科研工作者在难熔高熵合金的组分设计,微观组织调控以及性能开发等方面提供有价值的参考。

     

  • 图  1  Nb25Mo25Ta25W25和V20Nb20Mo20Ta20W20难熔高熵合金以及Inconel 718和Haynes 230两种高温合金屈服强度与温度之间的关系[4]

    Figure  1.  Temperature dependence of the yield stress of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 RHEAs and two superalloys, Inconel 718 and Haynes 230[4]

    表  1  难熔高熵合金元素的混合焓[19]

    Table  1.   Enthalpy of mixing of metal elements of refractory high entropy alloys[19]

    ElementsEnthalpy of mixing/(kJ·mol−1)
    TiZrHfNbMoTaWVAlCr
    Ti0002−41−6−2−30−7
    Zr0004−63−9−2−44−12
    Hf0004−43−6−2−39−9
    Nb2440−60−8−1−18−7
    Mo−4−6−4−60−500−50
    Ta1330−50−7−1−19−7
    W−6−9−6−80−70−1−21
    V−2−2−2−10−1−10−16−2
    Al−30−44−39−18−5−19−2−1600
    Cr−7−12−9−70−71−2−100
    下载: 导出CSV

    表  2  几种金属元素的密度ρ、熔点Tl和原子半径r

    Table  2.   Density ρ, melting point T1 and atomic radius r of several metal elements

    Elementρ/(g·cm−3)Tl/℃r/nmTl/ρ/(℃·g−1·cm3)
    Ti4.05616680.2411.2
    Zr6.4918520.216285.4
    Hf13.3122270.159167.3
    Nb8.5724680.208288.0
    Mo10.2326200.139256.1
    Ta16.6529960.209179.9
    W19.3534100.14176.2
    V5.9618900.132317.1
    Al2.76600.143244.4
    Cr7.1919700.128274.0
    下载: 导出CSV

    表  3  难熔高熵合金的微观组织和力学性能

    Table  3.   Mechanical properties of some refractory high entropy alloys

    AlloysPhasesρ/(g·cm3σ0.2/MPaσk/MPaεp/%Ref.
    NbMoTaWBCC105812111.5[4]
    NbMoTaWBCC405(1600 ℃)600(1600 ℃)>25[4]
    NbMoTaWVBCC124610870.5[4]
    NbMoTaWVBCC477(1600 ℃)0.95[4]
    HfMoTaTiZrBCC10.2116004[5]
    HfMoTaTiZrBCC10.21404(1200 ℃)>30[5]
    WMoVCrTaBCC11.529956.2[18]
    TaNbHfZrTiBCC9.94929>50[6]
    HfMoNbTaTiZrBCC9.95556(1200 ℃)>30[5]
    HfMoNbTaTiZrBCC9.95151212[5]
    Nb42Mo20Ti13Cr12V12Ta1BCC8.02268038965.2[21]
    Ti0.5MoNbTaVBCC9.99256327238.6[46]
    Ti1MoNbTaVBCC9.452280323824.9[46]
    Al0CrNbVMoBCC8.0327439.9[22]
    Al0.5CrNbVMoBCC7.75249713.5[22]
    Al1.0CrNbVMoBCC7.05232618.1[22]
    Al0CrNbVMoBCC8.031513(1000 ℃)16.4[22]
    Al0.5CrNbVMoBCC7.751178(1000 ℃)27.4[22]
    Al1.0CrNbVMoBCC7.051085(1000 ℃)>30[22]
    Al10Ti40V20Nb20Mo10BCC6.10900[50]
    Al10Ti40V20Nb20Mo10BCC6.10520(800 ℃)[50]
    Al15Ti35V20Nb20Mo10BCC6.03971[50]
    Al15Ti35V20Nb20Mo10BCC6.03550(800 ℃)[50]
    Al20Ti30V20Nb20Mo10BCC5.881187[50]
    Al20Ti30V20Nb20Mo10BCC5.88624(800 ℃)[50]
    Al0HfNbTiZrBCC8.56706>60[73]
    Al0.5HfNbTiZrBCC7.711120>60[73]
    Al0.75HfNbTiZrBCC7.431331277151[73]
    Al1.0HfNbTiZrBCC7.211582218433[73]
    Al1.25HfNbTiZrBCC7.051620175417[73]
    Al1.5HfNbTiZrBCC6.861746186411[73]
    Al0MoNbTaTiVBCC9.331227.9206630[49]
    Al0.2MoNbTaTiVBCC9.121292179116[49]
    Al0.4MoNbTaTiVBCC8.981332.2177613[49]
    Al0.6MoNbTaTiVBCC8.791352.9186821[49]
    Al1MoNbTaTiVBCC8.151391.214369[49]
    ZrTiHfNb0.5Ta0.5O0.05BCC955>50[73]
    ZrTiHfNb0.5Ta0.5O0.05BCC327(800 ℃)>50[73]
    ZrTiHfNb0.5Ta0.5O0.1BCC1097>50[73]
    ZrTiHfNb0.5Ta0.5O0.1BCC380(800 ℃)>50[73]
    ZrTiHfNb0.5Ta0.5O0.2BCC13938.2[73]
    ZrTiHfNb0.5Ta0.5O0.2BCC537(800 ℃)>50[73]
    AlNb2TiVB26.191043[12]
    TiZrNbMoTa(1300 ℃ SPS)BCC+FCC8.43361210.4[16]
    TiZrNbMoTa(1400 ℃ SPS)BCC+FCC8.68375912.1[16]
    TiZrNbMoTa(1600 ℃ SPS)BCC+FCC8.763453[16]
    NbMoTaTi0.5Ni0.5BCC+FCC1750227815[17]
    NbMoTaTi0.5Ni0.5BCC+FCC1279(600 ℃)670(600 ℃)28.42[17]
    NbMoTaTi0.5Ni0.5BCC+FCC757(800 ℃)1034(800 ℃)28[17]
    NbMoTaTi0.5Ni0.5BCC+FCC555(1000 ℃)650(1000 ℃)11[17]
    Ti1.5MoNbTaVBCC+FCC9.082696303410.8[46]
    Ti2MoNbTaVBCC+FCC8.75282431377.9[46]
    Al0.2MoNbTaTiW/MCBCC+FCC10.71805[65]
    (NbTaTiV) /Ti-C-OBCC+FCC1760227011[67]
    (NbTaTiV) /Ti-C-OBCC+FCC685(1000 ℃)[67]
    HfNbTaTiZrBCC+HCP9.911597[15]
    HfNbTaTiZrBCC+HCP9.91356(1200 ℃)[15]
    Cr0.3Hf0.5Mo0.5NbTiZrBCC+Laves1176153814.61[47]
    NbMoTaWVCr(1400℃ SPS)BCC+Laves11.234422[70]
    NbMoTaWVCr(1500℃ SPS)BCC+Laves11.16341638345.3[70]
    NbMoTaWVCr(1600℃ SPS)BCC+Laves11.06365836852[70]
    NbMoTaWVCr(1700℃ SPS)BCC+Laves11.02353835381.9[70]
    Al20Cr10Nb15Ti20V25Zr10B2+Laves5.55153510000.6[71]
    Al20Cr10Nb15Ti20V25Zr10B2+Laves5.551000(800 ℃)[71]
    CrNbTiZrAl0.25BCC+Laves5.8512458.85[25]
    TiZrNbTaN0.3BCC1115115213.2[74]
    TiZrNbTa N0.6BCC1196127014.7[74]
    TiZrNbTa N0.9BCC124217.5[74]
    (NbMoTiVSi0.2)100-xLa0BCC+M5Si3+MSi21766209116.47[26]
    (NbMoTiVSi0.2)100-xLa0.1BCC+M5Si3+MSi21868212014.03[26]
    (NbMoTiVSi0.2)100-xLa0.2BCC+M5Si3+MSi21814212215.34[26]
    (NbMoTiVSi0.2)100-xLa0.3BCC+M5Si3+MSi21839213016[26]
    (NbMoTiVSi0.2)100-xLa0.4BCC+M5Si3+MSi21828208512.83[26]
    (NbMoTiVSi0.2)100-xLa0.5BCC+M5Si3+MSi21929215715.28[26]
    (NbMoTiVSi0.2)95La5BCC+M5Si3+MSi219292157[26]
    Hf0.5Mo0.5NbTiZrB0.1BCC+MB21562200624[27]
    Hf0.5Mo0.5NbTiZrB0.3BCC+MB21464203827[27]
    Hf0.5Mo0.5NbTiZrB0.7BCC+MB21552195714[27]
    Hf0.5Mo0.5NbTiZrB0.9BCC+MB21851218112[27]
    下载: 导出CSV
  • [1] LIU X L,ZHANG J X,YIN J Q,et al. Monte carlo simulation of order-disorder transition in refractory high entropy alloys:a data-driven approach[J]. Computational Materials Science,2021,187:110135. doi: 10.1016/j.commatsci.2020.110135
    [2] 郭娜娜,高绪杰,朱光明,等. 难熔高熵合金的研究进展[J]. 热加工工艺,2021,50(8):1-4. doi: 10.14158/j.cnki.1001-3814.20182708

    QUO N N,GAO X J,ZHU G M,et al. Research progress of refractory high-entropy alloys[J]. Hot Working Technology,2021,50(8):1-4. doi: 10.14158/j.cnki.1001-3814.20182708
    [3] QIAO D X,JIANG H,JIAO W N,et al. A novel series of refractory high-entropy alloys Ti2ZrHf0.5VNb x with high specific yield strength and good ductility[J]. Acta Metallurgica Sinica(English Letters),2019,32(8):925-931. doi: 10.1007/s40195-019-00921-3
    [4] SENKOV O N,WILKS G B,SCOTT J M,et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics,2011,19(5):698-706. doi: 10.1016/j.intermet.2011.01.004
    [5] JUAN C C,TSAI M H,TSAI C W,et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys[J]. Intermetallics,2015,62:76-83. doi: 10.1016/j.intermet.2015.03.013
    [6] SENKOV O N,SCOTT J M,SENKOVA S V,et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys & Compounds,2011,509(20):6043-6048.
    [7] SENKOV O N,WILKS G B,MIRACLE D B,et al. Refractory high-entropy alloys[J]. Intermetallics,2010,18(9):1758-1765. doi: 10.1016/j.intermet.2010.05.014
    [8] 张勇, 陈明彪, 杨潇 等. 先进高熵合金技术[M]. 北京: 化学工业出版社, 2019.

    ZHANG Y, CHEN M B, YANG X, et al. Advanced technology in high-entropy alloys[M]. Beijing: Chemical Industry Press, 2019.
    [9] 魏耀光,郭刚,李静 等. 难熔高熵合金在航空发动机上的应用[J]. 航空材料学报,2019,39(5):82-93. doi: 10.11868/j.issn.1005-5053.2019.000023

    WEI Y G,GUO G,LI J,et al. Application of refractory high entropy alloy in aeroengine[J]. Journal of Aeronautical Materials,2019,39(5):82-93. doi: 10.11868/j.issn.1005-5053.2019.000023
    [10] 孙博,夏铭,张志彬 等. 难熔高熵合金性能调控与增材制造[J]. 材料工程,2020,48(10):1-16. doi: 10.11868/j.issn.1001-4381.2020.000281

    SUN B,XIA M,ZHANG Z B,et al. Property tuning and additive manufacturing of refractory high-entropy alloys[J]. Journal of Materials Engineering,2020,48(10):1-16. doi: 10.11868/j.issn.1001-4381.2020.000281
    [11] 李肖逸,高绪杰,史程程 等. 共晶高熵合金研究进展[J]. 特种铸造及有色合金,2021,41(1):32-37. doi: 10.15980/j.tzzz.2021.01.006

    LI X Y,GAO X J,SHI C C,et al. Research progress in eutectic high entropy alloys[J]. Special Casting and Nonferrous Alloys,2021,41(1):32-37. doi: 10.15980/j.tzzz.2021.01.006
    [12] LIU X W,BAI Z C,DING X F,et al. A novel light-weight refractory high-entropy alloy with high specific strength and intrinsic deformability[J]. Materials Letters,2020,287:129255.
    [13] YURCHENKO N Y,PANINA E S,ZHEREBTSOV S V,et al. Microstructure evolution of a novel low-density Ti-Cr-Nb-V refractory high entropy alloy during cold rolling and subsequent annealing[J]. Materials Characterization,2019,158:109980. doi: 10.1016/j.matchar.2019.109980
    [14] CHEN Y W,XU Z Q,WANG M,et al. A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties[J]. Materials Science and Engineering: A,2020,792:139774. doi: 10.1016/j.msea.2020.139774
    [15] YANG C,AOYAGI K,BIAN H K,et al. Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr[J]. Materials Letters,2019,254:46-49. doi: 10.1016/j.matlet.2019.07.027
    [16] ZHU C L,LI Z J,HONG C F,et al. Microstructure and mechanical properties of the TiZrNbMoTa refractory high-entropy alloy produced by mechanical alloying and spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials,2020,93:105357. doi: 10.1016/j.ijrmhm.2020.105357
    [17] ZHANG H,ZHAO Y Z,CAI J L,et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing[J]. Materials & Design,2021,201:109462.
    [18] DAS S,ROBI P S. A novel refractory WMoVCrTa high-entropy alloy possessing fine combination of compressive stress-strain and high hardness properties[J]. Advanced Powder Technology,2020,31:4619. doi: 10.1016/j.apt.2020.10.008
    [19] TAKEUCHI A,INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions,2005,46:2817-2829. doi: 10.2320/matertrans.46.2817
    [20] LIU Q,WANG G F,LIU Y K,et al. Hot deformation behaviors of an ultrafine-grained MoNbTaTiV refractory high-entropy alloy fabricated by powder metallurgy[J]. Materials Science and Engineering: A,2021,809:140922. doi: 10.1016/j.msea.2021.140922
    [21] KANG B,KONG T Y,RAZA A,et al. Fabrication, microstructure and mechanical property of a novel Nb-rich refractory high-entropy alloy strengthened by in-situ formation of dispersoids[J]. International Journal of Refractory Metals and Hard Materials,2019,81:15-20. doi: 10.1016/j.ijrmhm.2019.02.009
    [22] KANG B,KONG T Y,RYU H J,et al. Superior mechanical properties and strengthening mechanisms of lightweight Al xCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process[J]. Journal of Materials Science & Technology,2021,69:32-41.
    [23] BHANDARI U,ZHANG C Y,ZENG C Y,et al. Computational and experimental investigation of refractory high entropy alloy Mo15Nb20Re15Ta30W20[J]. Journal of Materials Research and Technology,2020,9(4):8929. doi: 10.1016/j.jmrt.2020.06.036
    [24] BACHANI S K,WANG C J,LOU B S,et al. Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content[J]. Surface and Coatings Technology,2020,403:126351.
    [25] ZHU M,YAO L J,LIU Y Q,et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAl x(0.25≤x≤1.25) eutectic refractory high-entropy alloy[J]. Materials Letters,2020,272:127869. doi: 10.1016/j.matlet.2020.127869
    [26] XU Q,CHEN D Z,WANG C R,et al. Effects of La on microstructure and mechanical properties of NbMoTiVSi0.2 refractory high entropy alloys[J]. Transactions of Nonferrous Metals Society of China,2021,31(2):512-520. doi: 10.1016/S1003-6326(21)65513-9
    [27] GAO X J,WANG L,GUO N N,et al. In-situ development of MB2 and their effect on microstructure and mechanical properties of refractory Hf0.5Mo0.5NbTiZr high entropy alloy matrix composites[J]. International Journal of Refractory Metals and Hard Materials,2021,96:105473. doi: 10.1016/j.ijrmhm.2021.105473
    [28] YANG X,ZHANG Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics,2012,132(2/3):233-238. doi: 10.1016/j.matchemphys.2011.11.021
    [29] KING D M,MIDDLEBURGH S C,MCGREGOR A G,et al. Predicting the formation and stability of single phase high-entropy alloys[J]. Acta Materialia,2016,104:172-179. doi: 10.1016/j.actamat.2015.11.040
    [30] LEE C H,SONG G,GAO M C,et al. Lattice distortion in a strong and ductile refractory high-entropy alloy[J]. Acta Materialia,2018,160:158-172. doi: 10.1016/j.actamat.2018.08.053
    [31] LI Q Y,ZHANG H,LI D C,et al. The effect of configurational entropy on mechanical properties of single BCC structural refractory high-entropy alloys systems[J]. International Journal of Refractory Metals and Hard Materials,2020,93:105370. doi: 10.1016/j.ijrmhm.2020.105370
    [32] LI Z M,KÖRMANN F,GRABOWSKI B,et al. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity[J]. Acta Materialia,2017,136:262-270. doi: 10.1016/j.actamat.2017.07.023
    [33] MA D C,GRABOWSKI B,KÖRMANN F,et al. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one[J]. Acta Materialia,2015,100:90-97. doi: 10.1016/j.actamat.2015.08.050
    [34] KANG B C,LEE J H,RYU H J,et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science & Engineering:A,2018,712:616-624.
    [35] YANG X,CHEN S Y,COTTON J D,et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium[J]. JOM,2014,66(10):2009-2020. doi: 10.1007/s11837-014-1059-z
    [36] FENG X B,ZHANG J Y,WANG Y Q,et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films[J]. International Journal of Plasticity,2017,95:264-277. doi: 10.1016/j.ijplas.2017.04.013
    [37] ZOU Y,MA H,SPOLENAK R. Ultrastrong ductile and stable high-entropy alloys at small scales[J]. Nature Communications,2015,6(1):7748. doi: 10.1038/ncomms8748
    [38] POULIA A,GEORGATIS E,LEKATOU A,et al. Microstructure and wear behavior of a refractory high entropy alloy[J]. International Journal of Refractory Metals and Hard Materials,2016,57:50-63. doi: 10.1016/j.ijrmhm.2016.02.006
    [39] WU Y D,CAI Y H,WANG T,et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters,2014,130:277-280. doi: 10.1016/j.matlet.2014.05.134
    [40] YEH J W,CHEN S K,LIN S J,et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advances Engineering and Materials,2004,6(5):299-303. doi: 10.1002/adem.200300567
    [41] CAI Z B,JIN G,CUI X F,et al. Experimental and simulated data about microstructure and phase composition of a NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering[J]. Vacuum,2016,124:5-10. doi: 10.1016/j.vacuum.2015.11.007
    [42] HUANG M T,WANG C M,CUI H Z,et al. Investigation of the structure and properties of AlCrCuFeNiVx high-entropy alloys[J]. Vacuum,2020,173:109129. doi: 10.1016/j.vacuum.2019.109129
    [43] WASEEM W A,LEE J,LEE H M,et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy Ti xWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials[J]. Materials Chemistry and Physics,2018,210:87-94. doi: 10.1016/j.matchemphys.2017.06.054
    [44] ZHANG F,KATTNER U. Calphad and the high entropy alloy[J]. Journal of Phase Equilibria and Diffusion,2015,36(1):1-2. doi: 10.1007/s11669-014-0360-4
    [45] HAMED N Z,ALIREZA K R,JALIL V. Design of a low density refractory high entropy alloy in non-equiatomic W-Mo-Cr-Ti-Al system[J]. Vacuum,2020,181:109614. doi: 10.1016/j.vacuum.2020.109614
    [46] LIU Q,WANG G F,SUI X C,et al. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering[J]. Journal of Materials Science & Technology,2019,35(11):2600-2607.
    [47] GAO X J,WANG L,GUO N N,et al. Microstructure characteristics and mechanical properties of Hf0.5Mo0.5NbTiZr refractory high entropy alloy with Cr addition[J]. International Journal of Refractory Metals and Hard Materials,2021,95:105405. doi: 10.1016/j.ijrmhm.2020.105405
    [48] GUO S,LIU C T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science:Materials International,2011,21:433-446. doi: 10.1016/S1002-0071(12)60080-X
    [49] GE S F,FU H M,ZHANG L,et al. Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy[J]. Materials Science and Engineering: A,2020,784:139275. doi: 10.1016/j.msea.2020.139275
    [50] XU Z Q,MA Z L,WANG M,et al. Design of novel low-density refractory high entropy alloys for high-temperature applications[J]. Materials Science and Engineering: A,2019,755:318-322. doi: 10.1016/j.msea.2019.03.054
    [51] CHEN H,KAUFFMANN A,GORR B,et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al[J]. Journal of Alloys and Compounds,2016,661:206-215. doi: 10.1016/j.jallcom.2015.11.050
    [52] HAN Z D,CHEN N,ZHAO S F,et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J]. Intermetallics,2017,84:153-157. doi: 10.1016/j.intermet.2017.01.007
    [53] SENKOV O N,JENSEN J K,PILCHAK A L,et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials & Design,2018,139:498-511.
    [54] GUO Z,ZHANG A,HAN J,et al. Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo high-entropy alloys[J]. Materials Science,2019,54:5844-5851.
    [55] SENKOV O N,COUZINIE J P,RAO S I,et al. Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40[J]. Materialia,2020,9:100627. doi: 10.1016/j.mtla.2020.100627
    [56] CHEN S Y,TONG Y,TSENG K K,et al. Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures[J]. Scripta Materialia,2019,158:50-56. doi: 10.1016/j.scriptamat.2018.08.032
    [57] STEPANOV N D,YURCHENKO N Y,ZHEREBTSOV S V,et al. Aging behavior of the HfNbTaTiZr high entropy alloy[J]. Materials Letters,2018,211:87-90. doi: 10.1016/j.matlet.2017.09.094
    [58] TODA-CARABALLO I,RIVERA-DIVERA-DÍAZ-DEL-CASTILLO E J. Modelling solid solution hardening in high entropy alloys[J]. Acta Materialia,2015,85:14-23. doi: 10.1016/j.actamat.2014.11.014
    [59] FU Z Q,CHEN W P,WEN H M,et al. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy[J]. Acta Materialia,2016,107:59-71. doi: 10.1016/j.actamat.2016.01.050
    [60] FU Z,KOC R. Processing and characterization of TiB2-TiNiFeCrCoAl high-entropy alloy composite[J]. Journal of the American Ceramic Society,2017,100:2803-2813. doi: 10.1111/jace.14814
    [61] JOHNSON J L,GERMAN R M. Phase equilibria effects on the enhanced liquid phase sintering of tungsten-copper[J]. Metallurgical Transactions A,1993,24(11):2369-2377. doi: 10.1007/BF02646516
    [62] WANG G F,LIU Q,YANG J L,et al. Synthesis and thermal stability of a nanocrystalline MoNbTaTiV refractory high-entropy alloy via mechanical alloying[J]. International Journal of Refractory Metals & Hard Materials,2019,84:104988.
    [63] ONAWALE O T, COBBINAH P V, NZEUKOU R A, et al. Synthesis route, microstructural evolution, and mechanical property relationship of high-entropy alloys (HEAs): a review[]. Materials, 2021, 14: 3065.
    [64] WASEEM O A,RYU H J. Powder metallurgy processing of a W xTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications[J]. Scienctific Reports,2017,7:1926. doi: 10.1038/s41598-017-02168-3
    [65] HAN J S,SU B,ZHANG A J,et al. Forming and characterization of Al0.2MoNbTaTiW/MC refractory high-entropy alloy composite by spark plasma sintering and hot extrusion[J]. Materials Letters,2021,284(P2):128979.
    [66] 吕昭平,雷智锋,黄海龙,等. 高熵合金的变形行为及强韧化[J]. 金属学报,2018,54(11):1553-1566. doi: 10.11900/0412.1961.2018.00372

    LU Z P,LEI Z F,HUANG H L,et al. Deformation behavior and toughening of high-entropy alloys[J]. Acta Metallurgica Sinic,2018,54(11):1553-1566. doi: 10.11900/0412.1961.2018.00372
    [67] WANG M,MA Z L,XU Z Q,et al. Designing V xNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications[J]. Scripta Materialia,2021,191:131-136. doi: 10.1016/j.scriptamat.2020.09.027
    [68] FU A,GUO W M,LIU B,et al. A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties[J]. Journal of Alloys and Compounds,2020,815:152466. doi: 10.1016/j.jallcom.2019.152466
    [69] TIAN F Y,VARGA L K,CHEN N X,et al. Empirical design of single phase high-entropy alloys with high hardness[J]. Intermetallics,2015,58:1-6. doi: 10.1016/j.intermet.2014.10.010
    [70] LONG Y,LIANG X B,SU K,et al. A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties[J]. Journal of Alloys and Compounds,2019,780:607-617. doi: 10.1016/j.jallcom.2018.11.318
    [71] YURCHENKO N,PANINA E,TIKHONOVSKY M,et al. Structure and mechanical properties of an insitu refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite[J]. Materials Letters,2020,264:127372. doi: 10.1016/j.matlet.2020.127372
    [72] CHEN Y W,LI Y K,CHENG X W,et al. Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5Ox (x = 0.05, 0.1, 0.2) high-entropy alloys[J]. Materials Letters,2018,228:145-147. doi: 10.1016/j.matlet.2018.05.123
    [73] WANG W,ZHANG Z T,NIU J Z,et al. Effect of Al addition on structural evolution and mechanical properties of the Al xHfNbTiZr high-entropy alloys[J]. Materials Today Communications,2018,16:242-249. doi: 10.1016/j.mtcomm.2018.06.004
    [74] WANG R X,TANG Y,LEI Z F,et al. Achieving high strength and ductility in nitrogen-doped refractory highentropy alloys[J]. Materials & Design,2022,213:110356.
    [75] POLE M,SADEGHILARIDJANI M,SHITTU J,et al. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette[J]. Journal of Alloys and Compounds,2020,843:156004. doi: 10.1016/j.jallcom.2020.156004
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  47
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-03
  • 录用日期:  2022-09-12
  • 修回日期:  2022-10-16
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回