固溶方式对Al-Zn-Mg-Cu合金组织及性能的影响

王经涛 孙宁 余浪 李星辉 麻芳 王永红 程志远 郭丰佳

王经涛,孙宁,余浪,等. 固溶方式对Al-Zn-Mg-Cu合金组织及性能的影响[J]. 航空材料学报,2023,43(6):65-72 doi: 10.11868/j.issn.1005-5053.2023.000036
引用本文: 王经涛,孙宁,余浪,等. 固溶方式对Al-Zn-Mg-Cu合金组织及性能的影响[J]. 航空材料学报,2023,43(6):65-72 doi: 10.11868/j.issn.1005-5053.2023.000036
WANG Jingtao,SUN Ning,YU Lang,et al. Effect of solution treatment on microstructure and properties of Al-Zn-Mg-Cu alloy[J]. Journal of Aeronautical Materials,2023,43(6):65-72 doi: 10.11868/j.issn.1005-5053.2023.000036
Citation: WANG Jingtao,SUN Ning,YU Lang,et al. Effect of solution treatment on microstructure and properties of Al-Zn-Mg-Cu alloy[J]. Journal of Aeronautical Materials,2023,43(6):65-72 doi: 10.11868/j.issn.1005-5053.2023.000036

固溶方式对Al-Zn-Mg-Cu合金组织及性能的影响

doi: 10.11868/j.issn.1005-5053.2023.000036
详细信息
    通讯作者:

    王经涛(1995—),男,硕士,工程师,主要从事高强铝合金成分设计、热加工、热处理等方面的技术研发工作,联系地址:山东省烟台市龙口市徐福街道东海度假区海泰居小区(265700),E-mail: wjta0815@163.com

  • 中图分类号: TG146.1

Effect of solution treatment on microstructure and properties of Al-Zn-Mg-Cu alloy

  • 摘要: 采用单级固溶、低温长时高温短时以及低温短时高温长时双级固溶淬火制度对热轧态Al-Zn-Mg-Cu系铝合金进行固溶处理,并通过OM,SEM,DSC,EBSD等技术手段以及电导率测试等检测方法,系统地对比分析不同固溶方式对Al-Zn-Mg-Cu系铝合金组织及性能的影响。结果表明:所选用固溶淬火制度不会使组织发生过烧,且能够使组织中的低熔点共晶第二相充分回溶;当选用473 ℃/20 min+477 ℃/40 min双级固溶淬火制度时,板材固溶效果最佳,电导率最低,为27.60%IACS,且组织再结晶程度低于50%,组织中主要存在{112}〈111〉,{011}〈211〉,{123}〈634〉变形织构和{001}〈110〉剪切织构。

     

  • 图  1  Al-Zn-Mg-Cu系合金热轧态及固溶处理后金相显微组织 (a)热轧;(b)S1;(c)S2;(d)S3

    Figure  1.  Microstructures of Al-Zn-Mg-Cu alloy after hot-rolling and solution treatment (a)hot-rolling;(b)S1;(c)S2;(d)S3

    图  2  Al-Zn-Mg-Cu系合金热轧态及固溶处理后SEM组织 (a)热轧;(b)S1;(c)S2;(d)S3;(e)热轧样品放大组织;(f)S3样品放大组织

    Figure  2.  SEM microstructures of Al-Zn-Mg-Cu alloy after hot-rolling and solution treatment (a)hot-rolling;(b)S1;(c)S2;(d)S3;(e)hot-rolling microstructure amplification;(f)S3 sample microstructure amplification

    图  3  Al-Zn-Mg-Cu系合金热轧态及固溶处理后DSC热分析曲线

    Figure  3.  DSC thermal analysis curves of Al-Zn-Mg-Cu alloy after hot rolling and solution treatment

    图  4  Al-Zn-Mg-Cu系合金热轧态及固溶处理后电导率数值

    Figure  4.  Conductivity values of Al-Zn-Mg-Cu alloy after hot-rolling and solution treatment

    图  5  S3样品晶界重构图、晶粒方向分布图、织构分布图及取向分布函数图 (a) 晶界重构图;(b) 晶粒方位方向图;(c) 织构分布图;(d) 取向分布函数图

    Figure  5.  Grain boundary reconstruction, grain orientation spread, crystal orientation and orientation distribution function of S3 sample (a) grain boundary reconstruction, (b) grain orientation spread, (c) texture distribution, (d) orientation distribution function

    表  1  实验用Al-Zn-Mg-Cu系合金化学成分(质量分数/%)

    Table  1.   Chemical compositions of Al-Zn-Mg-Cu alloy(mass fraction/%)

    Si Fe Zn Mg Cu Mn Zr Al
    0.032 0.055 7.34 1.92 2.08 0.006 0.100 Bal
    下载: 导出CSV

    表  2  Al-Zn-Mg-Cu系合金固溶处理工艺参数

    Table  2.   Solution treatment process of Al-Zn-Mg-Cu aluminum alloy

    Alloy state Solution treatment process Process number
    Hot-rolled 475 ℃/60 min S1
    473 ℃/40 min+477 ℃/20 min S2
    473 ℃/20 min+477 ℃/40 min S3
    Note:1. quenching transfer time ≤ 3 s;2. complete testing with thermocouple
    下载: 导出CSV

    表  3  Al-Zn-Mg-Cu系合金热轧态及固溶处理后第二相元素成分(质量分数/%)

    Table  3.   Proportion of second phase elements in Al-Zn-Mg-Cu alloy after hot rolling and solution treatment (mass fraction/%)

    Position Al Zn Mg Cu Fe Phase
    XX
    下载: 导出CSV

    表  4  Al-Zn-Mg-Cu系合金热轧态及固溶处理后第二相尺寸及含量

    Table  4.   Size and content of the second phase of Al-Zn-Mg-Cu alloy after hot-rolling and solution treatment

    Process
    number
    ProcessSecond phase
    content/%
    Proportion of second phase size range/%Average
    size/μm
    ≤1 μm1-3 μm3-6 μm≥6 μm
    Hot-rolled2.973.1067.2126.563.132.45
    S1475℃/60 min0.531.3283.4413.911.322.09
    S2473 ℃/40 min+477 ℃/20 min1.091.8575.6719.772.712.32
    S3473 ℃/20 min+477 ℃/40 min0.391.1677.9118.442.492.29
    下载: 导出CSV

    表  5  Al-Zn-Mg-Cu系合金热轧态及固溶处理后DSC热分析曲线参数

    Table  5.   DSC thermal analysis curve parameters of Al-Zn-Mg-Cu alloy after hot rolling and solution treatment

    Process number Process Initial temperature of
    endothermic peak/℃
    Peak temperature of
    endothermic peak/℃
    Integrated area of
    endothermic peak/mJ
    Hot-rolled 477.86 480.42 31.92
    S1 475 ℃/60 min 478.68 481.33 7.19
    S2 473 ℃/40 min+477 ℃/20 min 478.56 481.15 10.37
    S3 473 ℃/20 min+477 ℃/40 min 479.09 482.13 1.35
    下载: 导出CSV

    表  6  S3样品织构类型占比统计

    Table  6.   Proportion statistics of texture types of S3 sample

    Texture type Proportion/%
    {001}〈100〉 0.7
    {001}〈110〉 1.2
    {112}〈111〉 4.5
    {011}〈211〉 5.7
    {123}〈634〉 3.4
    {110}〈001〉 3.0
    下载: 导出CSV
  • [1] 王路. 固溶淬火处理及预拉伸对Al-Zn-Mg-Cu合金组织及性能的影响[D]. 重庆:重庆大学,2021.

    WANG L. Effects of solution treatment and prestretching on microstructures and properties of Al-Zn-Mg-Cu alloy [D]. Chongqing:Chongqing University,2021.
    [2] 李彩琼,孔德斌,余鑫祥. 固溶处理对Al-8.8Zn-2.0Mg-2.1Cu-0.1Zr-0.1Ce合金组织性能的影响[J]. 金属热处理,2021,46(6):53-59. doi: 10.13251/j.issn.0254-6051.2021.06.011

    LI C Q,KONG D B,YU X X. Effect of solution treatment on microstructure and properties of Al-8.8Zn-2.0Mg-2.11Cu-0.1Zr-0.1Ce alloy[J]. Heat Treatment of Metals,2021,46(6):53-59. doi: 10.13251/j.issn.0254-6051.2021.06.011
    [3] WANG L,YANG X,ROBSON J D,et al. Microstructural evolution of cold-rolled AA7075 sheet during solution treatment[J]. Materials,2020,13(12):2734. doi: 10.3390/ma13122734
    [4] 范云强,黄树晖,李志辉,等. Al-Zn-Mg-Cu合金多道次热变形及固溶处理过程中的晶粒演变[J]. 航空材料学报,2017,37(2):1-6. doi: 10.11868/j.issn.1005-5053.2016.000177

    FAN Y Q,HUANG S H,LI Z H,et al. Grain evolution in process of multi-pass hot deformation and solution heat treatment of Al-Zn-Mg-Cu aluminum alloy[J]. Journal of Aeronautical Materials,2017,37(2):1-6. doi: 10.11868/j.issn.1005-5053.2016.000177
    [5] CHOI S,JEON J,SEO N,et al. Effect of heating rate on microstructure and mechanical properties in Al 7055[J]. Metals and Materials International,2021,27(3):449-455. doi: 10.1007/s12540-020-00910-7
    [6] 岳庚新. 7055铝合金的双级固溶处理工艺研究[J]. 天津冶金,2021(1):31-34.

    YUE G X. Study on two-stage solid solution treatment process of 7055 aluminum alloy[J]. Tianjin Metallurgy,2021(1):31-34.
    [7] 朱冉冉,张永安,熊柏青,等. 单级固溶处理对7136铝合金组织及力学性能的影响[J]. 航空材料学报,2012,32(5):37-42. doi: 10.3969/j.issn.1005-5053.2012.5.006

    ZHU R R,ZHANG Y A,XIONG B Q,et al. Effect of solution treatment on microstructures and mechanical properties of 7136 aluminum alloy[J]. Journal of Aeronautical Materials,2012,32(5):37-42. doi: 10.3969/j.issn.1005-5053.2012.5.006
    [8] 姜中涛,汪鑫,周志明,等. 双级固溶工艺对7050铝合金组织与力学性能的影响[J]. 金属热处理,2022,47(3):102-106.

    JIANG Z T,WANG X,ZHOU Z M,et al. Effect of two-step solution process on microstructure and mechanical properties of 7050 aluminum alloy[J]. Heat Treatment of Metals,2022,47(3):102-106.
    [9] 王春华,王峰,王凤良,等. 多级固溶对7136-0.35La铝合金组织与性能的影响[J]. 金属热处理,2021,6(9):124-128. doi: 10.13251/j.issn.0254-6051.2021.09.021

    WANG C H,WANG F,WANG F L,et al. Effect of multi-stage solid solution treatment on microstructure and properties of 7136-0.35La aluminum alloy[J]. Heat Treatment of Metals,2021,6(9):124-128. doi: 10.13251/j.issn.0254-6051.2021.09.021
    [10] 黄青梅,程全士,叶凌英,等. 强化固溶对紧固件用Al-Zn-Mg-Cu合金组织与性能的影响[J]. 中国有色金属学报,2021,31(9):2390-2402. doi: 10.11817/j.ysxb.1004.0609.2021-36594

    HUANG Q M,CHENG Q S,YE L Y,et al. Effects of enhanced solid solution on microstructure and properties of Al-Zn-Mg-Cu alloys used in fasteners[J]. The Chinese Journal of Nonferrous Metals,2021,31(9):2390-2402. doi: 10.11817/j.ysxb.1004.0609.2021-36594
    [11] TANG H P ,WANG Q D,LUO C L,et al. Effects of solution treatment on the microstructure,tensile properties,and impact toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy[J]. Acta Metallurgica Sinica (English Letters),2021,34(1):98-110.
    [12] ZHANG C S,ZHANG Z G,LIU M F,et al. Effects of single- and multi-stage solid solution treatments on microstructure and properties of as-extruded AA7055 helical profile[J]. Transactions of Nonferrous Metals Society of China,2021,31(7):1885-1901. doi: 10.1016/S1003-6326(21)65624-8
    [13] XU D K,ROMETSCH P A,BIRBILIS N. Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy. Part I. Characterisation of constituent particles and overheating[J]. Materials Science and Engineering:A,2012,534(1):234-243.
    [14] 孔淑萍. 固溶处理工艺对2026铝合金组织与性能的影响[D]. 沈阳:东北大学,2020.

    KONG S P. Effect of solid solution treatment on microstructure and properties of 2026 aluminum alloy [D]. Shenyang:Northeastern University,2020
    [15] 刘淑凤,夏雯,左玉婷,等. 7XXX铝合金过烧组织判定方法的比较研究[J]. 中国体视学与图像分析,2015,20(1):47-51. doi: 10.13505/j.1007-1482.2015.20.01.008

    LIU S F,XIA W,ZUO Y T,et al. Different methods to judge the overburned microstructures of the 7XXX aluminum alloy[J]. Chinese Journal of Stereology and Image Analysis,2015,20(1):47-51. doi: 10.13505/j.1007-1482.2015.20.01.008
    [16] XU D K,ROMETSCH P A,BIRBILIS N. Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy. Part II. microstructure and mechanical properties[J]. Materials Science and Engineering:A,2012,534:244-252. doi: 10.1016/j.msea.2011.11.073
    [17] 王孝国,李秋书,杨光印,等. 固溶时效对7K01铝合金组织和硬度及电导率的影响[J]. 特种铸造及有色合金,2019,39(5):480-482. doi: 10.15980/j.tzzz.2019.05.005

    WANG X G,LI Q S,YANG G Y,et al. Effects of solution and ageing treatment on microstructure,micro-hardness and electrical conductivity of 7K01 Al alloy[J]. Special Casting & Nonferrous Alloys,2019,39(5):480-482. doi: 10.15980/j.tzzz.2019.05.005
    [18] 陈立超,谭琳,周龙,等. 热处理制度对7020铝合金电导率及硬度的影响[J]. 热处理技术与装备,2018,39(6):48-50. doi: 10.19382/j.cnki.1673-4971.2018.06.011

    CHEN L C,TAN L,ZHOU L,et al. Effect of heat treatment system on conductivity and hardness of 7020 aluminum alloy[J]. Heat Treatment Technology and Equipment,2018,39(6):48-50. doi: 10.19382/j.cnki.1673-4971.2018.06.011
    [19] 张新明,韩念梅,刘胜胆,等. 7050铝合金厚板织构、拉伸性能及断裂韧性的不均匀性[J]. 中国有色金属学报,2010,20(2):202-208. doi: 10.19476/j.ysxb.1004.0609.2010.02.006

    ZHANG X M,HAN N M,LIU S D,et al. Inhomogeneity of texture,tensile property and fracture toughness of 7050 aluminum alloy thick plate[J]. The Chinese Journal of Nonferrous Metals,2010,20(2):202-208. doi: 10.19476/j.ysxb.1004.0609.2010.02.006
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  35
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 录用日期:  2023-06-25
  • 修回日期:  2023-05-05
  • 刊出日期:  2023-12-08

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。