连续SiC纤维增强钛基复合材料应用及研究进展

王敏涓 黄浩 王宝 韩波 杨平华 黄旭

王敏涓,黄浩,王宝,等. 连续SiC纤维增强钛基复合材料应用及研究进展[J]. 航空材料学报,2023,43(6):1-19 doi: 10.11868/j.issn.1005-5053.2023.000065
引用本文: 王敏涓,黄浩,王宝,等. 连续SiC纤维增强钛基复合材料应用及研究进展[J]. 航空材料学报,2023,43(6):1-19 doi: 10.11868/j.issn.1005-5053.2023.000065
WANG Minjuan,HUANG Hao,WANG Bao,et al. Application and research progress of continuous SiC fiber reinforced titanium matrix composite materials[J]. Journal of Aeronautical Materials,2023,43(6):1-19 doi: 10.11868/j.issn.1005-5053.2023.000065
Citation: WANG Minjuan,HUANG Hao,WANG Bao,et al. Application and research progress of continuous SiC fiber reinforced titanium matrix composite materials[J]. Journal of Aeronautical Materials,2023,43(6):1-19 doi: 10.11868/j.issn.1005-5053.2023.000065

连续SiC纤维增强钛基复合材料应用及研究进展

doi: 10.11868/j.issn.1005-5053.2023.000065
详细信息
    通讯作者:

    黄浩(1982—),男,博士,研究员,研究方向为连续SiC纤维增强钛基复合材料,联系地址:北京市81信箱15分箱(100095), E-mail: huanghaoxj@126.com

  • 中图分类号: TB333

Application and research progress of continuous SiC fiber reinforced titanium matrix composite materials

  • 摘要: 连续SiC纤维增强钛基(SiCf/Ti)复合材料具有比强度高、比模量高、耐高温等特点,在航空航天领域具有重要的应用前景。本文总结了SiCf/Ti复合材料的应用、制备、性能调控和检测技术,并提出了SiCf/Ti复合材料未来需要突破的瓶颈问题。SiCf/Ti复合材料单向性能优异,在环类转动件(叶环、涡轮盘等)、杆件(涡轮轴、连杆、紧固件等)以及板类构件(飞机蒙皮等)具有明显应用优势。常用的SiCf/Ti复合材料的制备方法有箔压法和基体涂层法,箔压法适合制备板类结构件,基体涂层法适用于缠绕形式的结构件,如环、盘以及杆等。SiCf/Ti复合材料的性能主要取决于SiC纤维、钛合金基体以及纤维/基体界面。SiC纤维微观结构和性能对制备工艺具有较强的敏感性,通过反应器结构和沉积条件调控获得性能稳定的SiC纤维是研究重点之一。钛合金基体可通过物理气相沉积的方法涂敷到纤维表面,制备出钛合金先驱丝,这是后续制备出高质量构件的关键。界面微观结构、热稳定性、力学性能与纤维表面的涂层密切相关,因此涂层种类和结构调控是SiCf/Ti复合材料的界面性能调控的重要手段。SiCf/Ti复合材料的应用促进了无损检测技术的发展,由此研究者开展了超声检测、X射线检测和声发射等在复合材料检测上的基础研究。为了实现SiCf/Ti复合材料的广泛应用,未来还需要在复合材料结构设计、低成本制造、失效分析与寿命预测等方面开展进一步的研究工作。

     

  • 图  1  采用SiCf/Ti复合材料研制的构件 (a)传统榫头结构叶盘至TiMMC叶环结构的演变图,内插图为最终形式的TiMMC叶环的剖面图[1] ;(b)英国国防部所支持项目研制的EJ200发动机叶环构件;(c)Rolls-Royce公司研制的各类TiMMC发动机构件[1]

    Figure  1.  Components manufactured by SiCf/Ti composite material  (a)structure evolution from the traditional disk to the TiMMC bling, illustration shows the cross-sectional view of the final form of TiMMC bling[1];(b)EJ200 engine bling components developed by project of UK Ministry of Defense;(c)various TiMMC engine components developed by Rolls Royce[1]

    图  2  采用SiCf/Ti复合材料研制的杆件 (a)全尺寸层铺TiMMC涡轮轴[1];(b)TiMMC 推力杆实物图[1];(c)F119发动机矢量喷管驱动器传动活塞杆[21];(d)GE XTE-45低压风扇轴图2[21];(e)F110连杆[21];(f)SiCf/Ti复合材料连接件[19]

    Figure  2.  Rod components fabricated by SiCf/Ti composite  (a)full size layered TiMMC turbine shaft[1];(b) image of TiMMC strut[1];(c)F119 engine vector nozzle driver transmission piston rod[21];(d)GE XTE-45 low-pressure fan shaft[21];(e)F110 connecting rod[21];(f)SiCf/Ti composite joining element[19]

    图  3  航天飞机蒙皮[22]

    Figure  3.  Skin structures of space shuttles[22]

    图  4  国外SiCf/Ti复合材料叶环不同的设计结构 (a)单芯结构;(b)双肩结构;(c)三纵结构;(d)五芯结构

    Figure  4.  Different design structures of SiCf/Ti composite bling  (a)single-core structure;(b)double-shoulder structure;(c)three-longitudinal structure;(d)five-core structure

    图  5  不同制备方法复合材料的纤维间距分布和疲劳性能[37] (a)纤维间距分布;(b)疲劳性能

    Figure  5.  Fiber spacing distributions and fatigue performances of composite materials with different preparation methods[37]  (a)fiber spacing distribution;(b)fatigue performance

    图  6  两种SiC纤维拉伸断口详细的SEM图[44] (a)SiC-3200纤维;(b)SiC-3800纤维

    Figure  6.  Detailed SEM tensile fracture morphologies of two types of SiC fibers[44]  (a) SiC-3200 fiber;(b) SiC-3800 fiber

    图  7  SiC-3800纤维和SiC-3200纤维的显微结构特征示意图[44]

    Figure  7.  Schematic diagrams of microstructure characteristics of SiC-3800 fiber and SiC-3200 fiber[44]

    图  8  不同牌号的钛合金先驱丝照片 (a)SiCf -TC17;(b)SiCf -Ti60;(c)SiCf -TA19;(d)SiCf -TiAl

    Figure  8.  Morphologies of precursor wires with different titanium alloys  (a) SiCf -TC17;(b) SiCf -Ti60;(c) SiCf -TA19;(d)SiCf -TiAl   

    图  9  SiCf/Ti复合材料环形件超声和CT检测缺陷信号图 (a)超声检测;(b)CT检测

    Figure  9.  Ultrasonic signal map and CT signal map of the defect in SiCf/Ti composite bling  (a) ultrasonic;(b) CT

    图  10  SiCf/Ti复合材料内部结构及缺陷CT图

    Figure  10.  Internal structure and defects CT image of SiCf/Ti composite material

    表  1  各国关于SiCf/Ti复合材料构件研制的项目规划[3-4]

    Table  1.   Project planning in different countries for developing SiCf/Ti composite components[3-4]

    Country Project Content
    USA National Aero-space Plane(NASP) Promote the application and development of aeronautical materials
    The Integrated High Performance Turbine Technology Program(IHPTET) Promote the application of high thrust-weight ratio engine materials
    Titanium Composite Material Turbine Engine Component Consortium(TMCTECC) Establish a research and production base for the development of aero-engine
    UK Advanced Aero-engine Materials(ADAM) Develop the next generation SiCf/Ti for further improving the service temperature
    下载: 导出CSV

    表  2  国内外典型SiCf/Ti复合材料轴向拉伸性能[1615-17]

    Table  2.   Axial tensile properties of typical SiCf/Ti composites[1615-17]

    Composite T/℃ E /GPa σb /MPa
    SCS-6/Ti-6-4 RT 215 1823
    SCS-6/Ti-6-4 400 1618
    SCS-6/Ti-6-4 600 1579
    SCS-6/Ti-6-4 800 1201
    SCS-6/Ti-15-3 RT 206-244 1758-1903
    SCS-6/Ti-15-3 427 214-240 1489-1820
    SCS-6/Timetal 834 RT 217-220 2300-2400
    SM3256/Ti-6-4 RT 1625
    IMR-2/Ti-6-4 RT 200-210 1750
    IMR-2/TC17 RT 210-220 1900-2200
    Note:SCS-6 is SiC fiber produced by Specialty Materials Inc. in the USA;SM3256 is SiC fiber produced by TISICS in the UK;IMR-2 is SiC fiber produced by Institute of Metal Research,Chinese Academy of Sciences
    下载: 导出CSV

    表  3  SiCf/Ti复合材料不同制备方法的比较

    Table  3.   Comparison of different manufacturing methods for SiCf/Ti composites

    Method Advantage Disadvantage
    Foil-Fiber-Foil High densification and suitable for skin structures preparation The preparation of metal foil is difficult and costly, fibers are prone to contact and result in stress concentration
    Matrix coated fiber Uniform fiber distribution, controllable volume fraction, suitable for complex components preparation Low target utilization rate and deposition rate
    Powder method Simple preparation The uniformity of the powder is difficult to control and the adhesive is difficult to remove
    Plasma spray Low cost High deposition temperature
    Metal wire method Uniform fiber distribution The preparation of metal wire is difficult and costly
    下载: 导出CSV

    表  4  目前商业化SiC纤维参数[41-42]

    Table  4.   Parameters for current commercialized SiC fiber[41-42]

    d0 /μm dcore /μm tcoating /μm σb /GPa Etens /GPa
    SCS-6 144 C(33+3) 3 4300-4875 356±5
    Ultra SCS 146 C(33+3) 3 5900 415
    SM1140 100 W(15) 5 3200-3600 330-360
    SM3256 143 W(15) 2-3 3800-4200 400
    下载: 导出CSV

    表  5  金属基复合材料中常用的钛合金基体及分类[41-4257]

    Table  5.   Classification for reinforced titanium alloy matrix in metal matrix composites[41-4257]

    Species Alloy E /GPa σb/MPa σ0.2 /MPa Maximum temperature /℃
    Quasi-α Ti-6242S 114 1100 990
    Timetal834 120 1030(RT)
    600(600 ℃)
    910(RT)
    480(600 ℃)
    480-520
    Ti-1100 112 1010-1050 900-950
    α+β Ti-6-4 110-140 900-1200 800-1100
    Ti-6-2-4-6 114 1100-1200 1000-1100

    Metastable-β Ti17 427
    Ti-15-3 80-100 800-1100 800-1000
    β-21S 900-1200
    α2(Ti3Al) Super α2 900-1100 825 520-550
    γ(TiAl) γ-basic alloy 480
    O-phase(Ti2AlNb) Ti-22-25 160-176 650-700
    下载: 导出CSV
  • [1] DOORBAR P J,KYLE-HENNEY S. Development of continuously-reinforced metal matrix composites for aerospace applications [J]. Comprehensive Composite Materials II. Elsevier,2018,4:439-463.
    [2] GUO S,HU C,GAO H,et al. SiC (SCS-6) fiber-reinforced Ti3AlC2 matrix composites:Interfacial characterization and mechanical behavior[J]. Journal of the European Ceramic Society,2015,35(5):1375-1384. doi: 10.1016/j.jeurceramsoc.2014.11.034
    [3] 王玉敏,张国兴,张旭,等. 连续SiC纤维增强钛基复合材料研究进展[J]. 金属学报,2016,52(10):1153-1170.

    WANG Y M,ZHANG G X,ZHANG X,et al. Advances in SiC fiber reinforced titanium matrix composites[J]. Acta Metallurgica Sinica,2016,52(10):1153-1170.
    [4] 杨锐,石南林,王玉敏,等. SiC纤维增强钛基复合材料研究进展[J]. 钛工业进展,2005,22(5):32-36.

    YANG R,SHI N L,WANG Y M,ea al. Recent progress in SiC fibre reinforced titanium matrix composites[J]. Titanium Industry Progress,2005,22(5):32-36.
    [5] AGHDAM M M,MORSALI S R. Effects of manufacturing parameters on residual stresses in SiC/Ti composites by an elastic-viscoplastic micromechanical model[J]. Computational materials science,2014,91:62-67. doi: 10.1016/j.commatsci.2014.04.026
    [6] SHARMA G,RANA R S,SHARMA S,et al. Reinforced monolithic titanium alloys:a review[J]. Materials Today:Proceedings,2018,5(14):28271-28278.
    [7] MAHESH S,MISHRA A. Strength distribution of Ti/SiC metal-matrix composites under monotonic loading[J]. Engineering Fracture Mechanics,2018,194:86-104. doi: 10.1016/j.engfracmech.2018.03.015
    [8] 黄旭,朱知寿,王红红. 先进航空钛合金材料与应用 [M].北京: 国防工业出版社,2012.

    HUANG X,ZHU Z S,WANG H H. Advances aeronautical titanium alloys and applications [M]. Beijing:National Defense Industry Press,2012.
    [9] NIU X,LIU Y,CHEN X,et al. Growth behavior of short fatigue cracks in a unidirectional SiC fiber-reinforced titanium matrix composite under spectrum loading[J]. Theoretical and Applied Fracture Mechanics,2021,114:102980. doi: 10.1016/j.tafmec.2021.102980
    [10] NIU X,YAO X,LIU Y,et al. Fatigue performance analysis of SiCf/Ti composites under spectrum load[J]. International Journal of Fatigue,2023,168:107404. doi: 10.1016/j.ijfatigue.2022.107404
    [11] WANG Y,XU X,ZHAO W,et al. Damage accumulation during high temperature fatigue of Ti/SiCf metal matrix composites under different stress amplitudes[J]. Acta Materialia,2021,213:116976. doi: 10.1016/j.actamat.2021.116976
    [12] KONG X,WANG Y,YANG Q,et al. Enhanced effect of matrix growth texture on the longitudinal modulus of a titanium matrix composite prepared from magnetron sputtering[J]. Materials Letters,2019,245:37-40. doi: 10.1016/j.matlet.2019.02.087
    [13] 刘世锋,宋玺,薛彤,等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报,2020,40(3):77-94.

    LIU S F,SONG X,XUE T,et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials,2020,40(3):77-94.
    [14] BAHL S. Fiber reinforced metal matrix composites —a review[J]. Materials Today:Proceedings,2021,39:317-323.
    [15] HAYAT M D,SINGH H,HE Z,et al. Titanium metal matrix composites:an overview[J]. Composites Part A,2019,121:418-438. doi: 10.1016/j.compositesa.2019.04.005
    [16] LEYENS C,HAUSMANN J,KUMPFERT J. Continuous fiber reinforced titanium matrix composites:fabrication,properties,and applications[J]. Advanced Engineering Materials,2003,5(6):399-410. doi: 10.1002/adem.200310093
    [17] 成小乐,尹君,屈银虎,等. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术及界面特性研究综述 [J]. 材料导报,2018,32(5):796-807.

    CHENG X L,YIN J,QU Y H,et al. A review of the state-of-art preparation techniques and interface characteristics of continuous-silicon-fiber-reinforced titanium matrix (SiCf/Ti) composites [J] Materials Reports,2018,32(5):796-807.
    [18] DELANNAY F. Thermal stresses and thermal expansion in metal matrix composites [M]. Comprehensive Composite Materials II. [S.l.]:Elsevier,2018,4:213-241.
    [19] KUMPFERT J,WEBER K,DUDEK H,et al. Advanced TMCs for highly loaded components [C]//Spacecraft Structures,Materials and Mechanical Testing. Braunschweig,Germany:[s.n.],1999:315.
    [20] MUSSATTO A,AHAD I U I,MOUSAVIAN R T,et al. Advanced production routes for metal matrix composites[J]. Engineering Reports,2021,3(5):12330. doi: 10.1002/eng2.12330
    [21] SINGERMAN S,JACKSON J,LYNN M. Titanium metal matrix composites for aerospace applications [C]//Superalloys 1996,proceedings of eighth international symposium on superalloys. [S.l.]:[s.n.],1996:579-586.
    [22] TJONG W C. High temperature materials for hypersonic flight vehicles [J]. Journal of UNSW@ ADFA Undergraduate Hypersonics,2007,1(1):1-14.
    [23] KYLE-HENNEY S,MITRA A,IIES M. Delivering light-weighting for net zero aviation [Z]. Paris Air Show 2023. Paris. 2023
    [24] MARC R,RUCINSKI M,COATES A,et al. Design concepts and implementation of the lightweight advanced robotic arm demonstrator (LARAD) [C]//Proceedings of the 67th International Astronautical Congress (IAC). Guadalajara,Mexico:[s.n.],2016:26-30.
    [25] 胡强,胡智波,米栋,等. SiC纤维增强整体叶环破裂转速研究[J]. 燃气涡轮试验与研究,2019,31(6):36-40.

    HU Q,HU Z B,MI D,et al. Burst rotation speed of SiC fiber reinforced bling[J]. Gas Turbine Experiment and Research,2019,31(6):36-40.
    [26] 赵冰,王晓亮,曲海涛,等. SiC纤维增强β21S复合材料及蒙皮结构制备技术研究[J]. 航空制造技术,2018,61(20):26-37.

    ZHAO B,WANG X L,QU H B,et al. Fabrication of SiC fiber reinforced β21s alloy composites and its skin structures[J]. Aeronautical Manufacturing Technology,2018,61(20):26-37.
    [27] 金旗. SiC纤维增强Ti基复合材料的制备及微观组织结构研究 [D]. 北京:北京科技大学,2021.

    JIN Q. Preparation and microstructure of fiber reinforced Ti matrix composites [D]. Beijing:University of Science and Technology Beijing,2021
    [28] LIN C,WANG S,YAN H,et al. Optimization mechanisms of microstructure and mechanical properties of SiC fiber reinforced Ti/Al3Ti laminated composite synthesized using titanium barrier[J]. Metals and Materials International,2021,27:306-318. doi: 10.1007/s12540-020-00724-7
    [29] ZHANG H,LIU L,PEI Z,et al. An effective strategy towards construction of CVD SiC fiber-reinforced superalloy matrix composite[J]. Journal of Materials Science & Technology,2020,49:179-185.
    [30] MAO X N,ZHANG P S,YU L L. The new progress in the research of SiC fiber reinforced titanium matrix composites[J]. Rare Metals Letter,2005,24:1-7.
    [31] DJANARTHANY S,VIALA J C,BOUIX J. Development of SiC/TiAl composites:processing and interfacial phenomena[J]. Materials Science and Engineering:A,2001,300(1/2):211-218. doi: 10.1016/S0921-5093(00)01787-1
    [32] WARD-CLOSE M,GODFREY S,ROBERTSON J. Titanium metal matrix composites [M].CANTOR B,ASSENDER H,GRANT P. Aerospace Materials. Bristol and Philadelphia: Institute of Physics Publishing,2001:241-252.
    [33] SHEN Y,JIA Q,ZHANG X,et al. Tensile behavior of SiC fiber-reinforced γ-TiAl composites prepared by suction casting[J]. Acta Metallurgica Sinica (English Letters),2021,34:932-942. doi: 10.1007/s40195-020-01170-5
    [34] 解川,鲁世强,黄浩,等. 放电等离子烧结热压时间对SiCf/TC17板材致密化的影响[J]. 特种铸造及有色合金,2019,39(9):997-1002.

    XIE C,LUI S Q,HUANG H,et al. Effects of hot pressing time of spark plasma sintering on densification rate of SiCf/TC17 sheet[J]. Special-cast and Non-ferrous Alloys,2019,39(9):997-1002.
    [35] YANG H,TANG H,HAO L,et al. Process parameters and formation mechanism of SiCf/Ti6Al4V composites manufactured by a hybrid additive manufacturing method[J]. Journal of Materials Processing Technology,2021,291:117037. doi: 10.1016/j.jmatprotec.2020.117037
    [36] 姚泉,鲁世强,王克鲁,等. SiCf/Ti60复合材料预制体热等静压致密化过程数值模拟[J]. 塑性工程学报,2021,28(1):60-68.

    YAO Q,LU S Q,WANG K L,et al. Numerical simulation of hot isostatic pressing densification process of SiCf/Ti60 composites prefabricated body[J]. Journal of Plasticity Engineering,2021,28(1):60-68.
    [37] PARTRIDGE P G,WARD-CLOSE C M. Processing of advanced continuous fibre composites:current practice and potential developments[J]. International Materials Reviews,1993,38(1):1-24. doi: 10.1179/imr.1993.38.1.1
    [38] 韩振中,赵琪,冉庆选,等. 激光熔覆SiCf/Ti-6Al-4V复合材料界面特性与微观力学性能研究[J]. 稀有金属材料与工程,2022,51(9):3360-3365.

    HAN Z Z,ZHAO Q,RAN Q X,et al. Interface characteristics and micromechanical properties of laser cladding SiCf/Ti-6Al-4V composites[J]. Rare Metal Materials and Engineering,2022,51(9):3360-3365.
    [39] WATT G C R. An investigation of the use of metal matrix composites for pressure vessels [M]. Guildford:University of Surrey ,2018.
    [40] RIX M. Development of silicon carbide monofilaments for the reinforcement of metal matrix composites [M]. Guildford:University of Surrey ,2018.
    [41] 吴明. 碳涂层织构对SiC纤维增强Ti17合金基复合材料界面反应及性能影响研究 [D]. 长春:吉林大学,2018.

    WU M.Interfacial reactions and properties in SiCf/C/Ti17 composites effected by texture of carbon coatings [D]. Changchun:Jilin University,2018.
    [42] 张书铭. 连续SiC纤维增强Ti2AlNb基复合材料的制备及其力学性能研究 [D]. 秦皇岛:燕山大学,2019.

    ZHANG S M.Study on preparation and properties of continuous SiC fiber reinforced Ti2AlNb matrix composites [D].Qinhuangdao: Yanshan University,2019.
    [43] 黄浩. 直流电阻加热CVD法制备连续SiC纤维研究 [D]. 北京:北京航空材料研究院,2008.

    HUANG H. Study on the continuous SiC fiber fabricated by direct current resistent heating CVD [D]. Beijing :Beijing Institute of Aeronautical Materials,2008).
    [44] ZHANG Y,WEN M,SUN G X,et al. Insight into microstructural architectures contributing to the tensile strength of continuous W-core SiC fiber[J]. Journal of the European Ceramic Society,2020,40(15):5147-5161. doi: 10.1016/j.jeurceramsoc.2020.06.063
    [45] MA X,WANG H,CHENG X,et al. Rapid W/SiC reaction induced by laser surface remelting within SiCf/Ti17 composites[J]. Materials Letters,2023,333:133505. doi: 10.1016/j.matlet.2022.133505
    [46] WU L J,ZHANG Y,ZHANG K,et al. The high-temperature degradation mechanism of W-core SiC fibers[J]. Journal of the European Ceramic Society,2023,43(2):245-260. doi: 10.1016/j.jeurceramsoc.2022.10.002
    [47] HAN Y,QUE Q,CHENG R,et al. Microstructure evolution and mechanical performances of SiCf reinforced (Al3Ti+ Al3Ni)-based metallic–intermetallic laminate composite [J]. Metals and Materials International,2021:1-12.
    [48] 符跃春,韦泽麒,杨丽娜,等. SiCf/Ti2AlNb复合材料的界面反应及热稳定性[J]. 东北大学学报(自然科学版),2022,43(8):1105-1112.

    FU Y C,WEI Z Q,YANG L N,et al. Interfacial reaction and thermal stability of SiCf/Ti2AlNb composites[J]. Journal of Northeastern University (Natural Science),2022,43(8):1105-1112.
    [49] 王超,张旭,王玉敏,等. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报,2020,56(9):1275-1285.

    WANG C,ZHANG X,WANG Y M,et al. Mechanisms of interfacial reaction and matrix phase transition in SiCf/Ti65 composites[J]. Acta Metallurgica Sinica,2020,56(9):1275-1285.
    [50] HUANG B,LI M,CHEN Y,et al. Interfacial reaction in SiCf/Ti-6Al-4V composite by using transmission electron microscopy[J]. Materials Characterization,2015,109:206-215. doi: 10.1016/j.matchar.2015.09.023
    [51] LI X,ZHANG W. Interfacial reaction in SiCf/C/TiAl matrix composites[J]. Journal of Materials Research and Technology,2021,12:1227-1234. doi: 10.1016/j.jmrt.2021.03.072
    [52] 吕祥鸿. SiC连续纤维增强Ti基复合材料的界面扩散行为研究 [D]. 西安:西北工业大学,2006.

    LV X H.Study on the interfacial diffusion behaviors of SiC continuous fiber reinforced Ti-matrix composites [D]. Xian:Northwestern Polytechnical University,2006.
    [53] XIAN L U O,CHAO L I,YANG Y-Q,et al. Microstructure and interface thermal stability of C/Mo double-coated SiC fiber reinforced γ-TiAl matrix composites[J]. Transactions of Nonferrous Metals Society of China,2016,26(5):1317-1325. doi: 10.1016/S1003-6326(16)64198-5
    [54] LUO X,JI X,YANG Y,et al. Microstructure evolution of C/Mo double-coated SiC fiber reinforced Ti6Al4V composites[J]. Materials Science and Engineering:A,2014,597:95-101. doi: 10.1016/j.msea.2013.12.077
    [55] FENG G,YANG Y. Improvement of interfacial compatibility of SiCf/Ti-6Al-4V composites by applying fiber coating and heat treatment[J]. Materials & Design,2021,210:110042.
    [56] WU M,ZHANG K,HUANG H,et al. Interfacial reactions in SiCf/C/Ti17 composites dominated by texture of carbon coatings[J]. Carbon,2017,124:238-249. doi: 10.1016/j.carbon.2017.08.065
    [57] 赵冰,侯红亮,李志强,等. 连续纤维增强Ti3Al基复合材料力学性能研究[J]. 先进复合材料,2015,3:78-81.

    ZHAO B,HOU H L N,LI Z Q,et al. Mechanical properties study of continuous SiC fiber reinforced Ti3Al conposites[J]. Advances Conposites Technology,2015,3:78-81.
    [58] FANG W T F,HUANG X,LI H,et al. Microstructure inheritance of matrixes of SiCf/Ti6242 composites from precursor wire coatings by α+β phase field consolidation[J]. Rare Metals,2021,40(12):3676-3684. doi: 10.1007/s12598-021-01711-6
    [59] WANG M,HUANG H,WEN M,et al. The effect of modulated matrix microstructure on the deformation behavior in SiCf/Ti17 composites[J]. Materials Letters,2019,242:123-126. doi: 10.1016/j.matlet.2019.01.122
    [60] MUTHUCHAMY A,RAM G D J,SARMA V S. Spark plasma consolidation of continuous fiber reinforced titanium matrix composites[J]. Materials Science and Engineering:A,2017,703:461-469. doi: 10.1016/j.msea.2017.07.085
    [61] 何方成,梁菁,沙正骁,等. 航空发动机关键部件的缺陷检测与评估 [M]. 北京:国防工业出版社,2022.

    HE F C,LIANG J,SHA Z X,et al. Detection and evaluation of defects in critical aero engine components [M]. Beijing:National Defense Industry Press,2022.
    [62] 韩波,杨平华,林立志. 连续SiC纤维钛基复合材料制件的超声底波监控检测 [J]. 无损检测,2022,44(4):1-6.

    HAN B,YANG P H,LIN L Z.Ultrasonic back-wall echo monitoring and detection of continuous SiC fiber titanium matrix composites parts [J]. Nondestructive Testing,2022,44 (4):1-6.
    [63] 武玉鹏,张博,李经明,等. 航空发动机整体叶环中纤维断丝超声检测方法[J]. 金属学报,2020,56(8):1175-1184.

    WU Y P,ZHANG B,LI J M,et al. Ultrasonic detection for fiber broken in aero-engine integral bladed ring[J]. Acta Metallurgica Sinica,2020,56(8):1175-1184.
    [64] ROKHLIN S I,GANOR M,DEGTYAR A D. Ultrasonic characterization of fatigue damage in metal matrix composites [M]//Review of Progress in Quantitative Nondestructive Evaluation. Boston,MA:Springer US,1998:1605-1612.
    [65] SUN W,SUN Z,LU Q,et al. Fatigue hysteresis loops simulation of SiCf/Ti composites under two-stage cyclic Loading[J]. Applied Composite Materials,2019,26(3):1041-1057. doi: 10.1007/s10443-019-09765-7
    [66] HUNG Y C,BENNETT J A,GARCIA-PASTOR F A,et al. Fatigue crack growth and load redistribution in Ti/SiC composites observed in situ[J]. Acta Materialia,2009,57(2):590-599. doi: 10.1016/j.actamat.2008.09.042
    [67] KONG X,WANG Y M,ZHANG X,et al. Monitoring damage evolution in a titanium matrix composite shaft under torsion loading using acoustic emission[J]. Acta Metallurgica Sinica (English Letters),2019,32(10):1244-1252. doi: 10.1007/s40195-019-00888-1
    [68] KONG X,WANG Y,YANG Q,et al. Damage identification in fiber reinforced titanium matrix composites using acoustic emission[J]. Journal of Alloys and Compounds,2020,826:153928. doi: 10.1016/j.jallcom.2020.153928
    [69] LUO L,WANG J,SHA Y,et al. Experimental and numerical analysis of the progressive damage and failure of SiCf/TC4 composite shafts[J]. Applied Sciences,2023,13:6232. doi: 10.3390/app13106232
    [70] TAKASHIMA K,TONDA H,BOWEN P. Damage assessment in a SiC fibre reinforced Ti alloy by acoustic emission and dynamic mechanical measurements[C]//Titanium 1995. Birmingham:[s.n.],1995:2779-2786.
    [71] 孔旭,王玉敏,杨青,等. SiCf/Ti6242复合材料热机械疲劳损伤原位研究[J]. 稀有金属材料与工程,2020,49(3):993-938.

    KONG X,WANG Y M,YANG Q,et al. In situ detection of damage in the SiCf/Ti6242 composite during the thermomechanical fatigue test[J]. Rare Metal Materials and Engineering,2020,49(3):993-938.
    [72] JIA Q Y,WANG Y M,ZHANG X,et al. Multiscale failure mechanism analysis of SiC fiber-reinforced TC17 composite subjected to transverse tensile loading at elevated temperature [J]. Acta Metallurgica Sinica (English Letters),2023:1-16.
    [73] JIA Q,WANG Y,ZHANG X,et al. Failure mechanism of continuous fiber-reinforced titanium matrix composite bling under rotational loading[J]. Journal of Materials Research and Technology,2022,18:788-799. doi: 10.1016/j.jmrt.2022.03.006
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  66
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-10-26
  • 刊出日期:  2023-12-08

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。