Fe3+掺杂LaNiO3钙钛矿陶瓷的制备及其吸波性能

于嫚 周影影 应楷睿 谢辉

于嫚,周影影,应楷睿,等. Fe3+掺杂LaNiO3钙钛矿陶瓷的制备及其吸波性能[J]. 航空材料学报,2023,43(6):90-97 doi: 10.11868/j.issn.1005-5053.2023.000129
引用本文: 于嫚,周影影,应楷睿,等. Fe3+掺杂LaNiO3钙钛矿陶瓷的制备及其吸波性能[J]. 航空材料学报,2023,43(6):90-97 doi: 10.11868/j.issn.1005-5053.2023.000129
YU Man,ZHOU Yingying,YING Kairui,et al. Preparation and microwave absorption properties of Fe3+ doped LaNiO3 perovskite ceramics[J]. Journal of Aeronautical Materials,2023,43(6):90-97 doi: 10.11868/j.issn.1005-5053.2023.000129
Citation: YU Man,ZHOU Yingying,YING Kairui,et al. Preparation and microwave absorption properties of Fe3+ doped LaNiO3 perovskite ceramics[J]. Journal of Aeronautical Materials,2023,43(6):90-97 doi: 10.11868/j.issn.1005-5053.2023.000129

Fe3+掺杂LaNiO3钙钛矿陶瓷的制备及其吸波性能

doi: 10.11868/j.issn.1005-5053.2023.000129
基金项目: 国家自然科学基金(21903062);陕西省科学技术协会青年人才托举计划项目(20220462);陕西省青年科技新星项目(2023KJXX-075)
详细信息
    通讯作者:

    于嫚(1989—),女,博士,副教授,主要研究方向为吸波材料,E-mail:yuman@xaau.edu.cn

  • 中图分类号: TB34

Preparation and microwave absorption properties of Fe3+ doped LaNiO3 perovskite ceramics

  • 摘要: 通过溶胶-凝胶法制备Fe3+掺杂镍酸镧钙钛矿陶瓷,探究Fe3+掺杂对其形貌、结构和吸波性能的影响。采用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)分别对Fe3+掺杂镍酸镧的微观形貌、元素分布和物相进行表征,使用矢量网络分析仪测定Fe3+掺杂镍酸镧陶瓷的电磁参数并模拟吸波性能,研究Fe3+掺杂量对镍酸镧钙钛矿陶瓷吸波性能的影响。结果表明:Fe3+离子成功占据了Ni3+离子的晶格位置,形成了钙钛矿结构型陶瓷;Fe3+掺杂后对LaNiO3陶瓷材料的颗粒形貌影响较小;Fe元素在LaNiO3陶瓷材料中分布均匀无团聚;吸波性能最佳的Fe3+掺杂量是0.05,其匹配厚度为1.40 mm,最大峰值可达–18.145 dB,低于–10 dB的频宽有1.42 GHz(9.38~10.8 GHz)。

     

  • 图  1  LaNi1–xFexO3陶瓷的XRD图谱 (a)10°~80°;(b)31.5°~33.5°放大图

    Figure  1.  XRD patterns of LaNi1–xFexO3 ceramics (a) from 10 ° to 80 °; (b) enlarged diffraction peak at 31.5 °-33.5 °

    图  2  掺杂不同 Fe3+含量LaNi1–xFexO3的SEM图 (a)x=0;(b)x=0.05;(c)x=0.1;(d)x=0.2

    Figure  2.  SEM images of LaNi1–xFexO3 ceramics doped with different Fe3+ contents (a)x=0;(b)x=0.05;(c)x=0.1;(d)x=0.2

    图  3  LaNi1–xFexO3x=0.2)陶瓷的EDS元素分布分析图 (a)面扫描区域;(b)Fe元素分布;(c)Ni元素分布;(d)La元素分布

    Figure  3.  EDS element distribution analysis of LaNi1–xFexO3x=0.2)ceramics (a)surface scanning area;(b)Fe element distribution;(c)Ni element distribution;(d)La element distribution

    图  4  LaNi1–xFexO3x=0、0.05、0.10 和0.2)陶瓷 (a)复介电参数;(b)复磁导率;(1)实部;(2)虚部

    Figure  4.  LaNi1–xFexO3x=0, 0.05, 0.10, and 0.2)ceramics (a)complex permittivity;(b)complex permeability;(1)real parts;(2)imaginary parts

    图  5  LaNi1–xFexO3x=0、0.05、0.10 和0.2)陶瓷的介电损耗 (a)和磁损耗(b)与频率的关系

    Figure  5.  Frequency dependence of dielectric (a) and magnetic loss tangents (b) of LaNi1–xFexO3x=0, 0.05, 0.10, and 0.2) ceramics

    图  6  不同厚度LaNi1–xFexO3x=0、0.05、0.10和0.2)陶瓷反射损耗与频率的关系 (a)x=0;(b)x=0.05;(c)x=0.10;(d)x=0.2

    Figure  6.  Frequency dependence of reflection loss curves at different thicknesses for LaNi1–xFexO3 ceramics (a)x=0;(b) x=0.05;(c)x=0.10;(d)x=0.2

    图  7  Fe3+掺杂LaNiO3吸波机理示意图

    Figure  7.  Schematic diagram of Fe3+doped LaNiO3 absorption mechanism

    表  1  LaNi1-xFexO3 陶瓷的晶胞参数

    Table  1.   Calculated lattice parameters of LaNi1-xFexO3 ceramics

    LaNi1-xFexO3 a/nm b/nm c/nm V/nm3 Rp/% Rwp% χ2
    x=0 0.5456 0.5456 0.5456 0.1624 7.06 6.90 1.61
    x=0.05 0.5476 0.5476 0.5476 0.1642 5.16 5.87 1.48
    x=0.1 0.5477 0.5477 0.5477 0.1643 6.24 7.61 1.71
    x=0.2 0.5485 0.5485 0.5485 0.1651 7.23 8.90 1.83
    下载: 导出CSV

    表  2  LaNi1–xFexO3x=0、0.05、0.10和0.2)陶瓷的微波吸收性能

    Table  2.   Detailed microwave absorption performance of LaNi1–xFexO3x=0, 0.05, 0.10 and 0.2)ceramics

    LaNi1–xFexO3 Thickness/
    mm
    RL/dB Bandwidth of
    RL≤ 10 dB
    Band range /
    GHz
    x=0 1 0
    1.2 0
    1.4 0
    1.6 0
    1.8 0
    0
    x=0.05 1.25 13.05 1.1 10.2-11.3
    1.30 14.47 1.26 9.84-11.10
    1.35 17.10 1.31 9.59-10.90
    1.40 18.15 1.42 9.38-10.80
    1.45 15.34 1.23 9.27-10.50
    x=0.1 1.30 10 0.1 11.5-11.6
    1.40 11.06 0.8 10.9-11.7
    1.50 11.32 0.7 10.6-11.3
    1.60 10.97 0.7 10.4-11
    1.90 8.79 0
    x=0.2 0.80 5.62
    0.90 6.42
    1.00 7.87
    1.10 8.94
    1.20 8.02
    下载: 导出CSV
  • [1] DIXIT A S,KUMAR S,UROOJ S. A constant gain and miniaturized antipodal vivaldi antenna for 5G communication applications[J]. Computers,Materials & Continua,2022,73(3):4909-4921.
    [2] NANTAKAN W. Electromagnetic pollution alert:microwave radiation and absorption in human organs and tissues[J]. Electromagnetic Biology and Medicine,2021,40(2):11-18.
    [3] ZHANG H T,LIN S D. Research progress with membrane shielding materials for electromagnetic/radiation contamination[J]. Membranes,2023,13(3):315. doi: 10.3390/membranes13030315
    [4] PAN H F,DUAN Y P,HUANG L X,et al. Research advances in composition,structure and mechanisms of microwave absorbing materials[J]. Composites Part B,2021,224(3):229-251.
    [5] HUANG Y W,WANG Y J,WEI S C,et al. Preparation of graphene/Fe3O4/Ni electromagnetic microwave absorbing nano-composite materials[J]. International Journal of Modern Physics B,2019,33(3):144-168.
    [6] WU H J,WU G L,ZHAO B. Special issue on electromagnetic wave absorbing materials[J]. Journal of Materials Science:Materials in Electronics,2021,32(21):25-38.
    [7] HE P,ZHENG M J,LIU Q,et al. MXene nanohybrids:excellent electromagnetic properties for absorbing electromagnetic waves[J]. Ceramics International,2022,48(2):322-357.
    [8] HOUBI A,ALDASHEVICH Z A,ATASSI Y,et al. Microwave absorbing properties of ferrites and their composites:a review[J]. Journal of Magnetism and Magnetic Materials,2021,529:167839. doi: 10.1016/j.jmmm.2021.167839
    [9] LIANG C,QIU H,SONG P,et al. Ultra-light MXene aerogel/wood derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding[J]. Science Bulletin,2020,65(8):616-622. doi: 10.1016/j.scib.2020.02.009
    [10] LIU J L,ZHANG L M,WU H J. Electromagnetic wave-absorbing performance of carbons,carbides,oxides,ferrites and sulfides:review and perspective[J]. Journal of Physics D:Applied Physics,2021,54(20):203001. doi: 10.1088/1361-6463/abe26d
    [11] HAN M R,YANG Y F,LIU W,et al. Recent advance in three-dimensional porous carbon materials for electromagnetic wave absorption[J]. Science China (Materials),2022,65(11):2911-2935. doi: 10.1007/s40843-022-2153-7
    [12] HU K,DING W,WANG S P. Facile synthesis of LaNiO3 microspheres with efficient broad band microwave absorption performance[J]. Journal of Alloys and Compounds,2020,848(25):156579
    [13] JIANG J J,LI D,LI S J,et al. Electromagnetic wave absorption and dielectric-modulation of metallic perovskite lanthanum nickel oxide[J]. RSC Advances,2015,5(19):14584-14591. doi: 10.1039/C5RA00139K
    [14] GAO Z G,JIA Z R,WANG K K,et al. Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics[J]. Chemical Engineering Journal,2020,402:125951. doi: 10.1016/j.cej.2020.125951
    [15] CHENG P,CHENG R,JI Y,et al. Double-shelled hollow LaNiO3 nanocage as nanoreactors with remarkable catalytic performance:illustrating the special morphology and performance relationship[J]. Molecular Catalysis,2018,455:57-67. doi: 10.1016/j.mcat.2018.02.016
    [16] YANG X,HUANG H X,LIANG D M,et al. Electrocatalytic properties and modification of La0.6Ca0.4Co1− x Mn xO3 ( x=0-0.9) perovskite-type oxides[J]. Chemical Physics Letters,2020,738:136846-136846. doi: 10.1016/j.cplett.2019.136846
    [17] ZHOU Y,WEN Q,REN Z,et al. Gadolinium-doped strontium titanate for high-efficiency electromagnetic interference shielding[J]. Journal of Alloys and Compounds,2018,733:33-39. doi: 10.1016/j.jallcom.2017.10.289
    [18] LV H L,YANG Z L,PAN H G,et al. Electromagnetic absorption materials:current progress and new frontiers[J]. Progress in Materials Science,2022,127:100946. doi: 10.1016/j.pmatsci.2022.100946
    [19] WU Z C,CHENG H W,JIN C,et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption[J]. Advanced Materials,2021,34(11):2107538.
    [20] 王凡,姬广斌. 钙钛矿氧化物的结构调控及电磁特性研究进展[J]. 无机化学学报,2021,37(8):1353-1363.

    WANG F,JI G B,Research progress of microstructure control and electromagnetic wave absorbing properties of perovskite oxide[J]. Chinese Journal of Inorganic Chemistry,2021,37(8):1353-1363.
    [21] 王一帆,朱琳,韩露,等. 电磁吸波材料的研究现状与发展趋势[J]. 复合材料学报,2023,40(1):1-12.

    WANG Y F ,ZHU L,HAN L,et al. Research status and development trend of electromagnetic absorbing materials [J]. Acta Materiae Compositae Sinica,2023,40(1):1-12.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  27
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-27
  • 修回日期:  2023-09-08
  • 刊出日期:  2023-12-08

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。