石墨烯增强钛基复合材料界面调控及强韧化机理研究进展

弭光宝 陈航 李培杰 曹春晓

弭光宝,陈航,李培杰,等. 石墨烯增强钛基复合材料界面调控及强韧化机理研究进展[J]. 航空材料学报,2023,43(6):20-35 doi: 10.11868/j.issn.1005-5053.2023.000150
引用本文: 弭光宝,陈航,李培杰,等. 石墨烯增强钛基复合材料界面调控及强韧化机理研究进展[J]. 航空材料学报,2023,43(6):20-35 doi: 10.11868/j.issn.1005-5053.2023.000150
MI Guangbao,CHEN Hang,LI Peijie,et al. Interface controlling and mechanisms of strengthening and toughening of graphene reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2023,43(6):20-35 doi: 10.11868/j.issn.1005-5053.2023.000150
Citation: MI Guangbao,CHEN Hang,LI Peijie,et al. Interface controlling and mechanisms of strengthening and toughening of graphene reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2023,43(6):20-35 doi: 10.11868/j.issn.1005-5053.2023.000150

石墨烯增强钛基复合材料界面调控及强韧化机理研究进展

doi: 10.11868/j.issn.1005-5053.2023.000150
基金项目: 国家自然科学基金“叶企孙”科学基金(U2141222);中国航发自主创新专项(CXPT-2018-036;CXPT-2022-034)
详细信息
    通讯作者:

    弭光宝(1981—),男,博士,研究员,主要从事航空发动机钛合金及其纳米复合材料、阻燃机理等方面研究,联系地址:北京市81信箱15分箱(100095),E-mail:miguangbao@163.com

  • 中图分类号: TB331;V257

Interface controlling and mechanisms of strengthening and toughening of graphene reinforced titanium matrix composites

  • 摘要: 高超声速飞行器等航空装备的快速发展对钛合金综合性能及应用水平提出更高要求。采用传统热工艺技术制备钛合金的性能已经接近或达到理论极限。传统技术很难大幅提高钛合金的综合性能,探寻石墨烯技术改性钛合金成为一个重要发展方向。然而,钛合金中石墨烯的界面反应控制难度大,如何获得具有良好结合强度的石墨烯/钛界面是石墨烯增强钛基复合材料性能提升的基础与关键。本文在分析制约石墨烯增强钛基复合材料发展系列问题基础上,重点介绍石墨烯增强钛基复合材料微观组织、界面特征以及静态/动态力学性能、摩擦磨损、抗氧化性能和石墨烯强韧化机理等方面的研究进展,探讨现阶段解决石墨烯增强钛基复合材料分散均匀性、界面结合性和组织致密性的方案和优缺点,最后指出该类型材料在界面调控、大规模制备和性能稳定性等方面技术面临的挑战,并提出该类型材料发展应与理论计算技术、先进制备技术和特种功能应用相结合,深化界面优化设计和可控制备,拓宽应用领域。

     

  • 图  1  搅拌混合0.3% GO/高温钛合金混合粉体图像[34] (a)低倍;(b)高倍

    Figure  1.  Images of 0.3% GO/high-temperature titanium alloy mixed powder by solution agitation[34] (a)low magnification;(b)high magnification

    图  2  TiC在石墨烯缺陷处形核示意图[24]

    Figure  2.  Schematic diagram of TiC nucleating at graphene defects[24]

    图  3  Gr+TiBw/TC4复合材料微观图像  (a)、(b)三维结构界面[6067];(c)、(d) TiBw在石墨烯表面形核[56]

    Figure  3.  Microscopic images of Gr+TiBw/TC4 composites  (a),(b)three-dimensional interface structures[6067];(c),(d)TiBw nucleates on graphene surface[56]

    图  4  准连续网络结构石墨烯增强钛基复合材料  (a)示意图[74];(b)~(d)微观组织[72]

    Figure  4.  Graphene reinforced titanium matrix composite with quasi-continuous network structure  (a)schematic diagram[74];(b)-(d)microstructure[72]

    图  5  石墨烯的载荷传递和晶粒细化作用 (a)载荷传递原理图;(b)未添加GO的高温钛合金微观组织[34];(c)添加0.5% GO 的GO/高温钛合金材料微观组织[34]

    Figure  5.  Load transfer and grain refinement effect of graphene  (a)schematic diagram of graphene load transfer;(b)microstructure of high-temperature titanium alloy without GO; (c)microstructure of high-temperature titanium alloy with 0.5% GO[34]

    图  6  石墨烯增强钛基复合材料强化机理 (a)热等静压GO/高温钛合金材料[34];(b)放电等离子烧结不同碳源/TC4材料[24]

    Figure  6.  Strengthening mechanisms of graphene reinforced titanium matrix composites  (a)GO/high-temperature titanium alloy materials by hot isostatic pressing[34];(b)different carbon sources/TC4 materials by spark plasma sintering[24]

    图  7  石墨烯增强钛基复合材料潜在应用领域和制约因素

    Figure  7.  Potential application fields and restraining factors of graphene reinforced titanium matrix composites

    表  1  部分石墨烯增强钛基复合材料的制备方法和力学性能

    Table  1.   Processing methods and mechanical properties of some graphenere inforced titanium matrix composites

    Reinforcement/Matrix Dispersion method Sintering method Hot working method Tensile properties Ref
    0.5%Gr/
    Pure Ti
    BM HIP(1000 ℃) σb:≈500 MPa
    σs:≈425 MPa
    δ:≈12%
    [78]
    0.25%Gr/
    Pure Ti
    BM SPS(850 ℃) σbc:1345 MPa
    σsc:1122 MPa
    HV:435HV1
    [79]
    0.15%Gr
    /Pure Ti
    BM HP(1200 ℃) HR(950 ℃) σb:1025 MPa
    σs:913 MPa
    δ:28.6%
    [25]
    0.15%Gr/
    Pure Ti
    SA CP(600 MPa)
    +VS(1200 ℃)
    HE(900 ℃) σb:1050 MPa
    σs:948 MPa
    δ:9.8%
    [80]
    0.1%Gr/
    Pure Ti
    UD+BM SPS(~550 ℃) HR(950 ℃) σb:915 MPa
    σs:857 MPa
    δ:19%
    [55]
    0.3%Gr/
    Pure Ti
    BM SPS(850 ℃) HR(919 ℃)
    +HT(480 ℃)
    σb:≈1200 MPa
    σs:≈1000 MPa
    δ:≈25%
    [81]
    Ni@Gr/
    Pure Ti
    UD+BM SPS(550 ℃) HR(1000 ℃) σb:793 MPa
    σs:748 MPa
    δ:18%
    [27]
    Gr+TiBw/
    Pure Ti
    UD+BM SPS(800 ℃) HR(800 ℃) σb:782 MPa
    δ:22.5%
    [56]
    0.3%GO/
    Pure Ti
    UD+ SA SPS(1100 ℃) σb:545 MPa
    σs:433 MPa
    δ:24.2%
    [82]
    0.6%GO/
    Pure Ti
    UD+ SA SPS(1000 ℃) σb:535 MPa
    σs:446 MPa
    δ:≈12%
    [32]
    2.5%GO/
    Pure Ti
    UD+ SA HP(1200 ℃) σbc:1736 MPa
    σsc:1294 MPa
    HV:400HV0.25
    [83]
    0.5%GO/
    Pure Ti
    SA HP(1100 ℃) σbc:1324 MPa
    HV:280HV20
    [84]
    2.0%(volume fraction)GO/
    Pure Ti
    UD+BM PAS(1200 ℃) σbc:2062 MPa
    HV:320HV5
    [85]
    0.1%RGO/
    Pure Ti
    UD+BM SPS(1000 ℃) HT(800 ℃)+
    SSE
    σb:969 MPa
    σs:650 MPa
    δ:46%
    [86]
    Ag@RGO/
    Pure Ti
    UD+BM SPS(900 ℃) HR(1000℃) σb:900 MPa
    σs:790 MPa
    δ:8.4%
    [56]
    0.25%Gr/
    TC4
    SA +UD SPS(1000-1050℃) σb:968 MPa
    σs:940 MPa
    δ:10%
    [71]
    0.1%Gr/
    TC4
    RM SPS(900 ℃) σb:963 MPa
    σs:856 MPa
    δ:13.8%
    [72]
    0.01%Gr/
    TC4
    RM CP(10 MPa)+
    SPS(1000 ℃)
    σb:731 MPa
    σs:331 MPa
    δ:11.6%
    [87]
    0.5%Gr/
    TC4
    BM SPS(1000 ℃) σb:1013 MPa
    σs:947 MPa
    δ:3.6%
    [73]
    0.5%Gr/
    TC4
    BM SLM(1000 ℃) σb:1526 MPa
    σs:1517 MPa
    δ:1.3%
    [48]
    0.5%Gr/
    TC4
    RM SPS(900 ℃) σbc:1652 MPa
    σsc:1229 MPa
    [88]
    0.1%Gr+
    TiBw/TC4
    UD+BM HP(600 ℃) HR(900 ℃) σb:1182 MPa
    σs:≈1105 MPa
    δ:15.1%
    [26]
    0.1%Gr+
    TiBw/TC4
    UD+BM HP(600 ℃) HR(900 ℃) σb:1158 MPa
    σs:1105 MPa
    δ:15.8%
    [66]
    0.15%GO/
    TC4
    UD+BM SPS(900 ℃) HR(900 ℃) σb:1194 MPa
    σs:1085 MPa
    δ:7.0%
    [24]
    0.5%GO/
    TC4
    UD+ SA +VD HIP(700 ℃) HF(970 ℃)
    +HT(780 ℃)
    σb:1058 MPa
    σs:1021 MPa
    δ:9.3%
    [40]
    0.27%GO/
    TC4
    UD+ SA SPS(1100 ℃) σb:1040 MPa
    σs:922 MPa
    δ:5.3%
    [89]
    0.15%GO/
    CT20
    UD+BM SPS(1000 ℃) σb:821 MPa
    σs:759 MPa
    δ:21.5%
    [74]
    0.05%Gr/
    TC21
    UD+BM SPS(1000 ℃) σb:1162 MPa
    σs:1018 MPa
    δ:13.2%
    [18]
    0.4%Gr+B/
    TA15
    BM HP(900 ℃) HE(1000 ℃) σb:1349 MPa
    δ:8.9%
    [63]
    0.3GO%/
    Ti150
    UD+ VD HIP(1000 ℃) ST(1075 ℃)+
    AT(700 ℃)
    σb:749 MPa
    σs:571 MPa
    δ:18.9%
    (600 ℃)
    [16]
    Gr: graphene;GO: graphene oxide; RGO: reduced graphene oxide; BM: ball milling; RM: rocking milling;SA: solution agitation;UD: ultrasonic dispersing;VD: vacuum deoxygenating;HP:hot pressing; HIP: hot isostatic pressing; CP: cold pressing; VS:vacuum sintering; SPS: spark plasma sintering; PAS: plasma activated sintering; HR: hot rolling; HE: hot extruding;HF:hot forging; HT: heat treating;ST: solution treatment;AT:aging treatment; SSE: simple shear extrusion;σb:tensile strength;σs:yield strength;δ:elongation;σbc:compressive ultimate strength;σsc:compressive yield strength; HV: vickers hardness.
    下载: 导出CSV
  • [1] PETERS M,KUMPFERT J,WARD C H,et al. Titanium alloys for aerospace applications[J]. Advanced Engineering Materials,2003,5(6):419-427. doi: 10.1002/adem.200310095
    [2] LEYES C,PETERS M. Titanium and titanium alloys[M]. Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA,2003.
    [3] 蔡建明,弭光宝,高帆,等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程,2016,44(8):1-10.

    CAI J M,MI G B,GAO F,et al. Research and development of some advanced high temperature titanium alloys for aero-engine[J]. Journal of Materials Engineering,2016,44(8):1-10.
    [4] 曹京霞,弭光宝,蔡建明,等. 高温钛合金制造技术研究进展[J]. 钛工业进展,2018,35(1):1-8.

    CAO J X,MI G B,CAI J M,et al. Progress on manufacturing technology of high temperature titanium alloys[J]. Titanium Industry Progress,2018,35(1):1-8.
    [5] 张蕾涛,刘德鑫,张伟樯,等. 钛合金表面激光熔覆涂层的研究进展[J]. 表面技术,2020,49(8):97-104.

    ZHANG L T,LIU D X,ZHANG W Q,et al. Research progress of laser cladding coating on titanium alloy surface[J]. Surface Technology,2020,49(8):97-104.
    [6] 王欣,罗学昆,宇波,等. 航空航天用钛合金表面工程技术研究进展[J]. 航空制造技术,2022,65(4):14-24.

    WANG X,LUO X K,YU B,et al. Research progress on surface engineering technology of aerospace titanium alloys[J]. Aeronautical Manufacturing Technology,2022,65(4):14-24.
    [7] HAYATB M D,SINGHB H,HE Z,et al. Titanium metal matrix composites:an overview[J]. Composites Part A,2019,121:418-438. doi: 10.1016/j.compositesa.2019.04.005
    [8] 张丹丹,沈洪雷,曹霞,等. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程,2019,47(1):1-10.

    ZHANG D D,SHEN H L,CAO X,et al. Research progress in graphene reinforced aeronautical metal matrix composites[J]. Journal of Materials Engineering,2019,47(1):1-10.
    [9] TABIE V M,QUAISIE J K,LI J W,et al. Microstructure and mechanical properties of particle reinforced high-temperature titanium composites[J]. European Physical Journal-Applied Physics,2023,98:3. doi: 10.1051/epjap/2022220254
    [10] LEE C,WEI X,KYSAR J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321:385-388. doi: 10.1126/science.1157996
    [11] CAO C,DALY M,SINGH C V,et al. High strength measurement of monolayer graphene oxide[J]. Carbon,2015,81:497-504. doi: 10.1016/j.carbon.2014.09.082
    [12] DADKHAH M,SABOORI A,FINO P. An overview of the recent developments in metal matrix nanocomposites reinforced by graphene[J]. Materials,2019,12:2823. doi: 10.3390/ma12172823
    [13] 吴明宇,弭光宝,李培杰,等. 碳纳米材料改性TiAl基合金技术发展现状及展望[J]. 航空材料学报,2020,40(3):45-62. doi: 10.11868/j.issn.1005-5053.2020.000070

    WU M Y,MI G B,LI P J,et al. Current situation and prospect of TiAl-based alloy modified by carbon nanomaterials[J]. Journal of Materials Engineering,2020,40(3):45-62. doi: 10.11868/j.issn.1005-5053.2020.000070
    [14] 晏琪,陈彪,李金山. 碳纳米材料增强钛基复合材料研究进展[J]. 中国材料进展,2019,38(11):1061-1073.

    YAN Q,CHEN B,LI J S. Areview of carbon nanomaterials reinforced titanium metal matrix composites[J]. Materials China,2019,38(11):1061-1073.
    [15] MU X N,ZHANG H M,CAI H N,et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science and Engineering:A,2017,687:164-174. doi: 10.1016/j.msea.2017.01.072
    [16] CHEN H,MI GB,LI PJ,et al. Excellent high-temperature strength and ductility of graphene oxide reinforced high-temperature titanium alloy matrix composite fabricated by hot isostatic pressing and heat treatment[J]. Composites Communications,2022,30:101077. doi: 10.1016/j.coco.2022.101077
    [17] 陈航,弭光宝,李培杰,等. 氧化石墨烯对近α型高温钛合金非等温氧化行为的影响机理[J]. 稀有金属材料与工程,2022,51(8):2899-2906.

    CHEN H,MI G. B,LI PJ,et al. Influence mechanism of graphene oxide on non-isothermal oxidation behavior of near-α high-temperature titanium alloy[J]. Rare Metal Materials and Engineering,2022,51(8):2899-2906.
    [18] YU J S,ZHAO Q Y,HUANG A X,et al. Enhanced mechanical and tribological properties of graphene nanoplates reinforced TC21 composites using spark plasma sintering[J]. Journal of Alloys and Compounds,2021,873:159764. doi: 10.1016/j.jallcom.2021.159764
    [19] SABOORI A,MOHEIMANI S K,DADKHAH M. An overview of key challenges in the fabrication of metal matrix nanocomposites reinforced by graphene nanoplatelets[J]. Metals,2018,8:172. doi: 10.3390/met8030172
    [20] 弭光宝,黄旭,曹京霞. 一种石墨烯和钛合金复合粉末球磨制备方法:ZL201810164736.0[P]. 2019-06-28.
    [21] ZHOU Y,DONG L L,YANG Q H,et al. Controlled interfacial reactions and superior mechanical properties of high energy ball milled/spark plasma sintered Ti-6Al-4V graphene composite[J]. Advanced Engineering Materials,2021,23:2001411. doi: 10.1002/adem.202001411
    [22] MU X N,CAI H N,ZHANG H M,et al. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy[J]. Materials Science and Engineering:A,2018,725:541-548. doi: 10.1016/j.msea.2018.04.056
    [23] MAHMOOD S,DIN R U,KHAN M,et al. Microstructure,consolidation,electrochemical,and mechanical performance of titanium (Ti) composites reinforced by graphene nanoplatelets (GNPs) via mechanical alloying[J]. Materials Chemistry and Physics,2022,285:126142. doi: 10.1016/j.matchemphys.2022.126142
    [24] DONG L L,LU J W,FU Y Q,et al. Carbonaceous nanomaterial reinforced Ti-6Al-4V matrix composites:properties,interfacial structures and strengthening mechanisms[J]. Carbon,2020,164:272-286. doi: 10.1016/j.carbon.2020.04.009
    [25] ZHANG Z Y,LIANG Y L,CAO H Q,et al. Microstructure and interface structures of graphene reinforced pure titanium matrix composites by hot pressed sintering[J]. Materials Research Express,2019,6:115609. doi: 10.1088/2053-1591/ab474c
    [26] WANG H,ZHANG H M,CHENG X W,et al. Effect of ball milling time on microstructure and mechanical properties of graphene nanoplates and TiBw reinforced Ti-6Al-4V alloy composites[J]. Materials Science and Engineering:A,2022,861:144240. doi: 10.1016/j.msea.2022.144240
    [27] MU X N,CAI H N,ZHANG H M,et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites[J]. Carbon,2018,137:146-155. doi: 10.1016/j.carbon.2018.05.013
    [28] GUO Y H,HUANG J Q,YU K,et al. Effect of the Ti-6Al-4V powder size on the microstructure and mechanical properties of composites with nickel-coated graphene nanoflakes[J]. Materials Characterization,2022,184:111627. doi: 10.1016/j.matchar.2021.111627
    [29] 弭光宝,陈航,曹春晓. 一种阻燃石墨烯增强钛基复合材料的制备方法:ZL201810164736.0[P]. 2020-01-17.
    [30] YU K,MA H T,GUO Y H,et al. Microstructure evolution and mechanical properties of copper coated graphene nanoflakes/pure titanium matrix composites [J]. Materials Characterization,2022,194:112422. doi: 10.1016/j.matchar.2022.112422
    [31] ZHU Y,MURALI S,CAI W,et al. Graphene and graphene oxide:synthesis,properties,and applica-tions[J]. Advanced Materials,2010,22:3906-3924. doi: 10.1002/adma.201001068
    [32] DONG L L,XIAO B,LIU Y,et al. Sintering effect on microstructural evolution and mechanical properties of spark plasma sintered Ti matrix composites reinforced by reduced graphene oxides[J]. Ceramics International,2018,44:17835-17844. doi: 10.1016/j.ceramint.2018.06.252
    [33] 弭光宝,王旭东,沙爱学,等. 一种石墨烯和钛合金混合粉末制备方法:ZL201610928885.0[P]. 2018-06-05.
    [34] CHEN H,MI G B,LI P J,et al. Microstructure and tensile properties of graphene oxide reinforced high-temperature titanium alloy matrix composites[J]. Materials,2020,13:3358. doi: 10.3390/ma13153358
    [35] SUN P,ZHU M,WANG K,et al. Selective ion penetration of graphene oxide membranes[J]. ACS Nano,2012,7:428-437.
    [36] 弭光宝,陈航,王旭东,等. 一种复合粉末混合装置:ZL201811367737.1[P]. 2021-10-15.
    [37] TRAINA M,PEGORETTI A. In situ reduction of graphene oxide dispersed in a polymer matrix[J]. Journal of Nanoparticle Research,2012,14:801. doi: 10.1007/s11051-012-0801-0
    [38] MCALLISTER M J,LI J,ADAMSON D H,et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials,2007,19:4396-4404. doi: 10.1021/cm0630800
    [39] ZHANG X J,SONG F,WEI Z P,et al. Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction[J]. Materials Science and Engineering:A,2017,705:153-159. doi: 10.1016/j.msea.2017.08.079
    [40] CAO Z,WANG X D,LI J L,et al. Reinforcement with graphene nanoflakes in titanium matrix composites[J]. Journal of Alloys and Compounds,2017,696:498-502. doi: 10.1016/j.jallcom.2016.11.302
    [41] 张梅琳,韩清鹏. 超细复合粉末烧结技术研究进展[J]. 陶瓷学报,2018,39(4):375-379.

    ZHANG M L,HAN Q P. Development in study on the sintering of ultra-fine composite powders[J]. Journal of Ceramics,2018,39(4):375-379.
    [42] 韩翠柳,沈学峰,王衍,等. 放电等离子烧结新技术新材料研究现状与发展趋势[J]. 航空制造技术,2019,62(22):43-51. doi: 10.16080/j.issn1671-833x.2019.22.043

    HANCL,SHEN X F,WANG Y,et al. Current situation and development trend of spark plasma sintering[J]. Aeronautical Manufacturing Technology,2019,62(22):43-51. doi: 10.16080/j.issn1671-833x.2019.22.043
    [43] 弭光宝,沙爱学,蔡建明,等. 一种石墨烯增强钛基纳米复合材料及制备方法:ZL201710624037.5[P]. 2019-06-28.
    [44] SUN G X,ZHUANG S X,JIA D L,et al. Facile fabricating titanium/graphene composite with enhanced conductivity[J]. Materials Letters,2023,333:133680. doi: 10.1016/j.matlet.2022.133680
    [45] SHARMA D,KUMAR V,SINGH S. Mechanical and wear characteristics of spark plasma sintered titanium/multilayer graphene nanocomposites[J]. Proceedings of the Institution of Mechanical Engineers Part E,2023.doi: 10.1177/09544089231173523.
    [46] 王涛,龙剑平,杨绍利,等. 钛及钛合金粉末近净成形技术研究进展[J]. 钛工业进展,2015,32(5):7-12. doi: 10.13567/j.cnki.issn1009-9964.2015.05.003

    WANGT,LONG J P,YANG S L,et al. Research progress of near-shape forming technologies for titanium and titanium alloy powder[J]. Titanium Industry Progress,2015,32(5):7-12. doi: 10.13567/j.cnki.issn1009-9964.2015.05.003
    [47] 汪敏. Ti6Al4V合金粉末热等静压成形多尺度数值模拟与实验研究[D]. 武汉:华中科技大学,2018.

    WANG M. A multi scale numerical and experimental study of Ti6Al4V powders hot isostatic pressing[D]. Wuhan:Huazhong University of Science and Technology,2018.
    [48] YAN Q,CHEN B,LI J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting[J]. Carbon,2021,174:451-462. doi: 10.1016/j.carbon.2020.12.047
    [49] HU Z R,WANG D N,CHEN C J,et al. Bulk titanium-graphene nanocomposites fabricated by selective laser melting[J]. Journal of Materials Research,2019,34:1744-1753. doi: 10.1557/jmr.2019.65
    [50] WANG S W,ZHAO Z Y,BAI P K,et al. Effect of in situ synthesis TiC on the microstructure of graphene/Ti6Al4V composite fabricated by selective laser melting[J]. Materials Letters,2021,304:130715. doi: 10.1016/j.matlet.2021.130715
    [51] HU Z R,TONG G Q,NIAN Q,et al. Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites[J]. Composites Part B,2016,93:352-359. doi: 10.1016/j.compositesb.2016.03.043
    [52] DONG M,ZHOU W,ZHOU Z,et al. Microstructures and mechanical properties of carbon-added ti composites fabricated by laser powder bed fusion or spark plasma sintering[J]. Materials Transactions,2023,64:54-60. doi: 10.2320/matertrans.MT-MLA2022008
    [53] HERZOG D,SEYDA V,WYCISK E,et al. Additive manufacturing of metals[J]. Acta Materialia,2016,117:371-392. doi: 10.1016/j.actamat.2016.07.019
    [54] CHEN H,MI G B,LI P J,et al. Extremely high beta-transus temperature of graphene oxide reinforced high-temperature titanium alloy matrix composite[J]. Materials Letters,2021,291:129575. doi: 10.1016/j.matlet.2021.129575
    [55] MU X N,CAI H N,ZHANG H M,et al. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite[J]. Materials and Design,2018,140:431-441. doi: 10.1016/j.matdes.2017.12.016
    [56] LIU L,LI Y K,ZHANG H M,et al. Graphene nanoplatelets (GNPs)-templated synthesis of oriented TiB and the inspiration for tailoring three-dimensional (3D) interface structure in GNPs/Ti matrix composites [J]. Materials Characterization,2021,181:111447. doi: 10.1016/j.matchar.2021.111447
    [57] GUO Y H,YU K,NIU J Z,et al. Effect of reinforcement content on microstructures and mechanical properties of graphene nanoflakes-reinforced titanium alloy matrix composites[J]. Journal of Materials Research and Technology,2021,15:6871-6882. doi: 10.1016/j.jmrt.2021.11.109
    [58] DONG L L,ZHANG W,FU Y Q,et al. Reduced graphene oxide nanosheets decorated with copper and silver nanoparticles for achieving superior strength and ductility in titanium composites[J]. ACS Applied Materials and Interfaces,2021,13:43197-43208. doi: 10.1021/acsami.1c08899
    [59] LIU L,LI Y K,ZHANG H M,et al. Simultaneously enhancing strength and ductility in graphene nanoplatelets reinforced titanium (GNPs/Ti) composites through a novel three-dimensional interface design[J]. Composites Part B,2021,216:108851. doi: 10.1016/j.compositesb.2021.108851
    [60] LIU L,LI Y K,ZHANG H M,et al. Breaking through the dynamic strength-ductility trade-off in TiB reinforced Ti composites by incorporation of graphene nanoplatelets[J]. Composites Part B,2022,230:109499. doi: 10.1016/j.compositesb.2021.109499
    [61] YAN Q,CHEN B,YE E T,et al. Extraordinary antiwear properties of graphene-reinforced Ti composites induced by interfacial decoration[J]. ACS Applied Materials and Interfaces,2022,14:27118-27129. doi: 10.1021/acsami.2c03564
    [62] YAN Q,CHEN B,ZHANG B,et al. Inhibiting the interfacial reaction between few-layered graphene and titanium via SiC nanoparticle decoration[J]. Journal of Alloys and Compounds,2022,893:162183. doi: 10.1016/j.jallcom.2021.162183
    [63] HOU J B,CHI F H,CHI L D,et al. Effects of the interface and mechanical properties of GNPs/TA15 composites through adding B powders[J]. Journal of Alloys and Compounds,2022,902:162538. doi: 10.1016/j.jallcom.2021.162538
    [64] YU J S,ZHAO Y Q,ZHAO Q Y,et al. Microstructure and properties of titanium matrix composites synergistically reinforced by graphene oxide and alloying elements[J]. Advanced Engineering Materials,2023,25:2101778. doi: 10.1002/adem.202101778
    [65] ZHANG B,ZHANG F M,SABAF,et al. Graphene-TiC hybrid reinforced titanium matrix composites with 3D network architecture:Fabrication,microstructure and mechanical properties[J]. Journal of Alloys and Compounds,2021,859:157777. doi: 10.1016/j.jallcom.2020.157777
    [66] WANG H,ZHANG H M,CHENG X W,et al. Microstructure and mechanical properties of GNPs and in-situ TiB hybrid reinforced Ti-6Al-4V matrix composites with 3D network architecture[J]. Materials Science and Engineering:A,2022,854:143536. doi: 10.1016/j.msea.2022.143536
    [67] LIU L,LI Y K,ZHANG H M,et al. Enhanced strain-hardening capability in graphene nanoplatelets reinforced Ti composites through tailoring a novel three-dimensional interface structure[J]. Composites Part A,2022,156:106892. doi: 10.1016/j.compositesa.2022.106892
    [68] SHANG C Y,ZHANG F M,XIONG Y F,et al. Spark plasma forging and network size effect on strength-ductility trade-off in graphene reinforced Ti6Al4V matrix nanocomposites[J]. Materials Science and Engineering: A,2023,862:144480. doi: 10.1016/j.msea.2022.144480
    [69] MU X N,CAI H N,ZHANG H M,et al. Size effect of flake Ti powders on the mechanical properties in graphene nanoflakes/Ti fabricated by flake powder metallurgy[J]. Composites Part A,2019,123:86-96. doi: 10.1016/j.compositesa.2019.04.027
    [70] MU X N,ZHANG H M,CHEN P W,et al. Achieving well-balanced strength and ductility in GNFs/Ti composite via laminated architecture design[J]. Carbon,2022,189:173-185. doi: 10.1016/j.carbon.2021.11.049
    [71] ZHANG F M,WANG J,LIU T F,et al. Enhanced mechanical properties of few-layer graphene reinforced titanium alloy matrix nanocomposites with a network architecture[J]. Materials and Design,2020,186:108330. doi: 10.1016/j.matdes.2019.108330
    [72] YANG Y J,LIU M B,ZHOU S Q,et al. Breaking through the strength-ductility trade-off in graphene reinforced Ti6Al4V composites[J]. Journal of Alloys and Compounds,2021,871:159535. doi: 10.1016/j.jallcom.2021.159535
    [73] YAN Q,CHEN B,CAO L,et al. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides[J]. Journal of Materials Science and Technology,2022,96.85-93.
    [74] LU J W,DONG L L,LIU Y,et al. Simultaneously enhancing the strength and ductility in titanium matrix composites via discontinuous network structure[J]. Composites Part A,2020,136:105971. doi: 10.1016/j.compositesa.2020.105971
    [75] SHI W D,YAN Q,SHEN J H,et al. Enhanced adiabatic shear band susceptibility in Ti composites reinforced with quasi-continuous network of graphene nanosheets[J]. Composites Part A,2022,160:107055. doi: 10.1016/j.compositesa.2022.107055
    [76] SHI W D,YAN Q,SHEN J H,et al. Quasi-continuous GNS network induced local dynamic recrystallization along interfaces in titanium MMCs under high strain rate loading[J]. Materials Science and Engineering:A,2022,852:143723. doi: 10.1016/j.msea.2022.143723
    [77] 黄陆军,耿林. 非连续增强钛基复合材料研究进展[J]. 航空材料学报,2014,34(4):126-138. doi: 10.11868/j.issn.1005-5053.2014.4.013

    HUANG L J,GENG L. Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2014,34(4):126-138. doi: 10.11868/j.issn.1005-5053.2014.4.013
    [78] PAN H P,DING L,XU Y L,et al. Microstructure,mechanical and thermal properties of titanium matrix composites with different reinforcements[J]. Materials Research Express,2022,9:096512. doi: 10.1088/2053-1591/ac8f1f
    [79] LIU J,WU M X,YANG Y,et al. Preparation and mechanical performance of graphene platelet reinforced titanium nanocomposites for high temperature applications[J]. Journal of Alloys and Compounds,2018,765:1111-1118. doi: 10.1016/j.jallcom.2018.06.148
    [80] ZHANG Z Y,LIANG Y L,CAO H C,et al. The preparation and mechanical properties of a pure titanium-based matrix composite reinforced with graphene nanoplatelets[J]. Science of Advanced Materials,2020,12:296-303. doi: 10.1166/sam.2020.3531
    [81] CAO H C,LIANG Y L. The microstructures and mechanical properties of graphene-reinforced titanium matrix composites[J]. Journal of Alloys and Compounds,2020,812:152057. doi: 10.1016/j.jallcom.2019.152057
    [82] DONG L L,XIAO B,JIN L H,et al. Mechanisms of simultaneously enhanced strength and ductility of titanium matrix composites reinforced with nanosheets of graphene oxides[J]. Ceramics International,2019,45:19370-19379. doi: 10.1016/j.ceramint.2019.06.189
    [83] LIU J Q,HU N,LIU X Y,et al. Microstructure and mechanical properties of graphene oxide-reinforced titanium matrix composites synthesized by hot-pressed sintering[J]. Nanoscale Research Letters,2019,14:114. doi: 10.1186/s11671-019-2951-9
    [84] WAN Z M,LI J X,YANG D Y,et al. Microstructural and mechanical properties characterization of graphene oxide-reinforced Ti-matrix composites[J]. Coatings,2022,12:120. doi: 10.3390/coatings12020120
    [85] NIU B,ZHAO K,ZHANG F,et al. Microstructure and properties of graphene/titanium composite materials prepared by plasma activated sintering[J]. Science of Advanced Materials,2012,9:1126-1130.
    [86] SEDEHI S M R,KHOSRAVI M,YAGHOUBINEZHAD Y. Mechanical properties and microstructures of reduced graphene oxide reinforced titanium matrix composites produced by spark plasma sintering and simple shear extrusion[J]. Ceramics International,2021,47:33180-33190. doi: 10.1016/j.ceramint.2021.08.219
    [87] ZHANG W,ZHOU S Q,REN W J,et al. Uniformly dispersing GNPs for fabricating graphene-reinforced pure Ti matrix composites with enhanced strength and ductility[J]. Journal of Alloys and Compounds,2021,888:161527. doi: 10.1016/j.jallcom.2021.161527
    [88] LI A,SHI L,ZHANG W,et al. A simple way to fabricate Ti6Al4V matrix composites reinforced by graphene with exceptional mechanical properties[J]. Materials Letters,2019,257:126750. doi: 10.1016/j.matlet.2019.126750
    [89] SONG Y,LIU W W,SUN Y F,et al. Microstructural evolution and mechanical properties of graphene oxide-reinforced Ti6Al4V matrix composite fabricated using spark plasma sintering[J]. Nanomaterials,2021,11:1440. doi: 10.3390/nano11061440
    [90] HAGHIGHI M,SHAERI M H,SEDGHI A,et al. Effect of graphene nanosheets content on microstructure and mechanical properties of titanium matrix composite produced by cold pressing and sintering[J]. Nanomaterials,2018,8:1024. doi: 10.3390/nano8121024
    [91] GURBUZ M,MUTUK T. Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites[J]. Journal of Composite Materials,2018,52:543-551. doi: 10.1177/0021998317745143
    [92] ABDOLLAH S,MEHRAN D,PAOLO F,et al. An Overview of metal matrix nanocomposites reinforced with graphene nanoplatelets:mechanical,electrical and thermophysical properties[J]. Metals,2018,8:423. doi: 10.3390/met8060423
    [93] ZHANG Z,CHEN D. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites:a model for predicting their yield strength[J]. Scripta Materialia,2006,54:1321-1326. doi: 10.1016/j.scriptamat.2005.12.017
    [94] MI G B,CHEN H,LI P J,et al. Mechanism of graphene oxide promoting silicide precipitation in high-temperature titanium alloy[J]. Materials Today Communications,2023,37:106932. doi: 10.1016/j.mtcomm.2023.106932
    [95] TANG W H,ZHANG J,WU J Y,et al. Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites[J]. Acta Mechanica Sinica,2020,36:855-865. doi: 10.1007/s10409-020-00968-x
    [96] SONG Y,CHEN Y,LIU W W,et al. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers[J]. Materials and Design,2016,109:256-263. doi: 10.1016/j.matdes.2016.07.077
    [97] MAHMOOD S,IQBAL A,RAFIUD,et al. Influence of homogenizing methodology on mechanical and tribological performance of powder metallurgy processed titanium composites reinforced by graphene nanoplatelets [J]. Molecules,2022,27:2666. doi: 10.3390/molecules27092666
    [98] YU J S,ZHAO Q Y,ZHAO Y Q,et al. The tribological behavior of different carbon nanomaterials-reinforced the titanium (TC21) matrix composite[J]. Journal of Materials Research and Technology,2021,15:3683-3693. doi: 10.1016/j.jmrt.2021.09.155
    [99] CAO Z,LI J L,ZHANG H P,et al. Mechanical and tribological properties of graphene nanoplatelets-reinforced titanium composites fabricated by powder metallurgy[J]. Journal of Iron And Steel Research International,2020,27:1357-1362. doi: 10.1007/s42243-020-00417-w
    [100] RU J M,GAO G Q,CHENG J,et al. Microstructure and oxidation behaviour of graphene nanoplatelets/titanium composites prepared by spark plasma sintering[J]. Materials Chemistry and Physics,2020,256:123710. doi: 10.1016/j.matchemphys.2020.123710
    [101] GAO G Q,RU J M,CHENG J,et al. Microstructure and oxidation resistance of graphene/Ti-Al-Sn-Zr-Nb-Mo-Si composites prepared by spark plasma sintering[J]. Journal of Materials Engineering and Performance,2021,30:2174-2181. doi: 10.1007/s11665-021-05531-8
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  38
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-14
  • 录用日期:  2023-10-02
  • 修回日期:  2023-11-15
  • 刊出日期:  2023-12-08

目录

    /

    返回文章
    返回

    《航空材料学报》关于谨防假冒期刊的郑重声明

    近期,有不法分子冒充《航空材料学报》期刊及官网,谎称提供论文发表服务,发布虚假约稿信息,骗取作者发表费用,为此,本编辑部郑重声明如下:

    1、http://www.hkclxb.cn 为假冒网站,与《航空材料学报》没有任何关系。我刊没有委托任何第三方机构或个人,代表我刊约稿或提供发表服务。

    2、《航空材料学报》为中文期刊,只接收中文文章投稿,目前不刊登英文文章。

    3. 本刊官网是http://jam.biam.ac.cn/,本刊的官方投稿方式为网上投稿(登录官网首页—作者投稿)。如有不明可电话咨询,联系电话是010-62496277。

    敬请广大读者和作者认真识别,谨防上当受骗。