
单晶高温合金弹性模量和泊松比测试方法的现状分析
Current situation of research on test methods for elastic modulus and Poisson’s ratio of single crystal superalloys
针对单晶高温合金等材料弹性常数表现出的各向异性特点,归纳了现有用于单晶高温合金弹性模量和泊松比的两种主要测试方法:静态法和动态法。分析单晶高温合金弹性模量和泊松比的国内外研究现状,总结目前国内外研究中存在的主要问题及可行的解决途径,并指出:单晶高温合金弹性模量和泊松比测试缺乏专门的测试标准;相比国外,国内在测试与表征技术研究方面还存在明显的差距,工程应用中往往忽视晶体取向对弹性模量和泊松比的影响,因此有必要针对现有的测试标准和方法对测量单晶高温合金弹性常数的误差影响进行评估,制定适用于单晶高温合金的测试标准。同时,详细阐述在考虑晶体取向的影响下,通过对晶体取向指数与弹性模量的线性回归分析,建立单晶高温合金DD6材料弹性模量和泊松比与晶体取向的定量关系的过程。
In view of the anisotropic characteristics of elastic constants of single crystal superalloys and other materials, this paper summarizes two main existing testing methods for measuring elastic moduli and Poisson’s ratio of single crystal superalloys: static method and dynamic method, and analyses the research status of elastic moduli and Poisson’s ratio of single crystal superalloys both at home and aboard. Also, the main problems and feasible solutions in current research both at home and abroad are summarized. And it is pointed out that there is no special testing standard for the elastic moduli and Poisson's ratio of single crystal superalloys. Compared with foreign countries, there is still an obvious gap in the testing and characterization technology in China, and effect of crystal orientation on elastic moduli and Poisson's ratio is often neglected in engineering applications. So it is necessary to estimate the influence of errors in measuring elastic constants of single crystal alloys by exiting testing standards. Meanwhile, this paper describes how to establish the quantitative relationship between crystal elastic moduli and arbitrary crystal orientation for single crystal superalloy DD6 through linear regression analysis of crystal orientation index and elastic moduli.
单晶高温合金 / 弹性模量和泊松比 / 静态法 / 动态法 / 晶体取向 {{custom_keyword}} /
single crystal superalloys / elastic modulus and poisson’s ratio / static method / dynamic method / crystal orientation {{custom_keyword}} /
表1 材料弹性模量和泊松比的测量标准方法与应用范围Table 1 Standard method for measuring elastic modulus and Poisson’s ratio of materials and application range |
Type | Standard method | Standard name | Application range |
Note:E, G and μ are Young’s modulus, shear modulus and Poisson’s ratio;Ed and Gd are dynamic Young’s modulus and shear modulus. | |||
Static method | Extensometer | GB/T 22315;ASTM E111;ASTM E143 | Metallic materials E、G、μ |
Nanoindentation | ISO 14577 | Ploymer E | |
Moireinterferometry | HB 20448 | Metallic materials E、μ | |
Dynamic method | Sonic resonance | ASTM E1875 | Metallic materials Ed、Gd |
Impulse excitation of vibration | GB/T 22315;ASTM E1876; ISO 12680-1 | Metallic materials Ed、Gd | |
Ultrasonic | ASTM E494 | Metallic materials E、G、μ | |
Others | Neutron diffraction | ASTM E1316;ISO 21432 | Metallic materials E、μ |
表2 DD6合金的化学成分(质量分数/%)Table 2 Chemical composition of DD6 alloy(mass fraction/% ) |
Cr | Co | W | Mo | Al | Nb | Ta | Re | Hf | Ni |
3.8-4.8 | 8.5-9.5 | 7.0-9.0 | 1.5-2.5 | 5.2-6.2 | 0-1.2 | 6.0-8.5 | 1.6-2.4 | 0.05-0.15 | Bal. |
表3 不同测试温度和晶体取向试样的弹性模量Table 3 Elastic modulus of specimens at different test temperatures and crystal orientations |
Temperature/℃ | No. of sample | Deviation of orientation/° | J | E/GPa | ||
[001] | [011] | [111] | ||||
20 | D1T51 | 3.9 | 41.2 | 51.4 | 4.60×10–3 | 130.0 |
20 | D1T52 | 7.4 | 38.3 | 47.8 | 1.64×10–2 | 131.0 |
20 | D2T59 | 39.8 | 5.3 | 34.7 | 2.42×10–1 | 218.0 |
20 | D2T510 | 44.1 | 1.9 | 33.5 | 2.50×10–1 | 221.0 |
20 | C15-2B | 43.7 | 1.8 | 34.1 | 2.50×10–1 | 233.0 |
20 | C26-8A | 43.9 | 5.9 | 29.6 | 2.54×10–1 | 232.0 |
20 | S42-5A | 51.5 | 29.4 | 5.9 | 3.27×10–1 | 317.0 |
20 | S42-6A | 50.3 | 32.3 | 4.6 | 3.29×10–1 | 316.0 |
20 | S43-7A | 49.9 | 30.6 | 5.6 | 3.27×10–1 | 315.0 |
850 | 183-11B | 5.4 | 40.3 | 49.6 | 8.79×10–1 | 101.7 |
850 | 185-8B | 8.4 | 37.6 | 46.9 | 2.10×10–1 | 99.9 |
850 | 187-7B | 7.9 | 39.6 | 46.9 | 1.86×10–1 | 100.0 |
850 | D2T55 | 43.8 | 2.6 | 33.0 | 2.50×10–1 | 193.2 |
850 | F15-9A | 44.1 | 1.6 | 33.9 | 2.50×10–1 | 187.5 |
850 | F18-1A | 44.0 | 2.6 | 32.9 | 2.51×10–1 | 193.1 |
850 | F18-8A | 43.4 | 1.6 | 35.1 | 2.49×10–1 | 183.2 |
850 | B10-12A | 42.9 | 2.2 | 34.8 | 2.49×10–1 | 200.4 |
850 | F16-7A | 43.4 | 1.7 | 34.8 | 2.49×10–1 | 199.9 |
850 | F16-2A | 41.5 | 3.5 | 35.4 | 2.46×10–1 | 189.5 |
850 | B10-1A | 44.3 | 0.7 | 35.2 | 2.50×10–1 | 187.7 |
850 | B10-13A | 43.8 | 3.5 | 32.1 | 2.51×10–1 | 191.2 |
表4 晶向参数与弹性模量的方程常数Table 4 Equation constants of crystal direction parameters and elastic moduli |
Temperature/℃ | S11 | 2(S11 - S12 - S44/2) |
20 | 0.00785 | 0.01405 |
20[40] | 0.00749 | 0.01323 |
850 | 0.01027 | 0.02022 |
1 |
张国栋, 苏彬, 王泓, 等. 航空动力学报. 弹性模量对高温低周应变疲劳参数的影响. 2005, 20(5): 768-771
ZHANG G D, SU B, WANG H, et al. Journal of Aerospace Power. Effect of elastic modulus on parameter of low cycle fatigue performance. 2005, 20(5): 768-771
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
张志华, 于慧臣, 李影, 等. 航空材料学报. 单晶镍基高温合金在600~760 ℃下的低循环疲劳行为. 2018, 3(28): 58-64
ZHANG Z H, YU H C, LI Y, et al. Journal of Aeronautical Materials. Low cycle fatigue behaviors of single crystal nickel-based superalloy at temperatures of 600~760 ℃. 2018, 3(28): 58-64
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
张仕朝, 李旭东, 于慧臣, 等. 航空材料学报. DD6合金1100 ℃低周疲劳行为. 2018, 1(38): 95-100
ZHANG S C, LI X D, YU H C, et al. Journal of Aeronautical Materials. Low cycle fatigue of single crystal nickel-based superalloy DD6 at 1100 ℃. 2018, 1(38): 95-100
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
BAEK D C, PARK T S, LEE S B. Key Engineering Materials. Measurement of mechanical properties of electroplated nickel thin film. 2004, 261-263: 417-422
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
OUDRISS A, FLEURENTIN A, COURLIT G, et al. Materials Science and Engineering: A. Consequence of the diffusive hydrogen contents on tensile properties of martensitic steel during the desorption at room temperature. 2014, 598: 420-428
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
LETHBRIDGE Z A D, WILLIAMS J J, WALTON R I, et al. Acta Materialia. Direct static measurement of single-crystal Young’s moduli of the zeolite natrolite: comparison with dynamic studies and simulations. 2006, 54(9): 2533-2545
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
SENGUPTA A, PUTATUNDA S K, BARTOSIEWICZ L, et al. Journal of Materials Engineering and Performance. Tensile behavior of a new single crystal nickel-based superalloy(CMSX-4) at room and elevated temperatures. 1994, 3(5): 664-672
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
MIGLIORI A, MAYNARD J D. Review of Scientific Instruments. Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. 2005, 76: 1-7
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
HALDIPUR P, MARGETAN F J, THOMPSON R B. AIP Conference Proceedings. Estimation of single-crystal elastic constants from ultrasonic measurements on polycrystalline specimens. 2004, 700: 1061-1068
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
OGI H, LEDBETTER H, KIM S, et al. The Journal of the Acoustical Society of America. Contactless mode-selective resonance ultrasound spectroscopy: electromagnetic acoustic resonance. 1999, 106(2): 660-665
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
ADELINET M, FORTIN J, GUEGUENY, et al. Geophysical Research Letters. Frequency and fluid effects on elastic properties of basalt: experimental investigations. 2010, 37(2): 489-496
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
李禾, 严超华, 李仁增, 等. 机械强度. 云纹干涉法测定高温材料弹性模量及泊松比. 2004, 26(3): 302-306
LI H, YAN C H, LI R Z, et al. Journal of Mechanical Strength. Measuring elastic modulus and Poisson’s ratio for high temperature materials by Moiré interferometry. 2004, 26(3): 302-306
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
GOGU C, YIN W, HAFTKA R, et al. Experimental Mechanics. Bayesian identification of elastic constants in multi-directional laminate from Moiré interferometry displacement fields. 2013, 53(4): 635-648
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
EBERL C, GIANOLA D S, WANG X, et al. Acta Materialia. A method for in situ measurement of the elastic behavior of a columnar thermal barrier coating. 2011, 59(9): 3612-3620
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
STONE H J, HOLDENT M, REED R C. Scripta Materialia. Determination of the plane specific elastic constants of waspaloy using neutron diffraction. 1999, 40(3): 353-358
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
GNAUPELH T, BRAND P C, PRASK H J. Advances in X-Ray Analysis. Accessing the elastic properties of cubic materials with diffraction methods. 1998, 42: 464
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
GNAUPEL H T, BRAND P C, PRASK H J. Journal of Applied Crystallography. Calculation of single-crystal elastic constants for cubic crystal symmetry from powder diffraction data. 1998, 31(6): 929-935
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
SIEBORGER D, KNAKE H, GLATZEL U. Materials Science and Engineering: A. Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases. 2001, 298: 26-33
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
WALTONR I, SMITH C W, LETHBRIDGE Z A D, et al. Acta Materialia. Elastic anisotropy and extreme Poisson’s ratios in single crystal. 2010, 58(19): 6444-6451
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
HERMANN W, SOCKEL H G, HAN J, et al. Superalloys. Elastic properties and determination of elastic constants of nickel-base superalloy by a free-free beam technique. 1996 229-238
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
TURLEY J, SINES G. Journal of Physics D: Applied Physics. The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. 1971, 4(2): 264-271
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
HACHET G, METSUE A, OUDRISS A, et al. Acta Materialia. Influence of hydrogen on the elastic properties of nickel single crystal: a numerical and experimental investigation. 2018, 148: 280-288
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
LEISURE R G, WILLIS F A. Journal of Physics: Condensed Matter. Resonant ultrasound spectroscopy. 1997, 9: 6001-6029
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
LI D Y, SZPUNAR J A. Acta Metallurgica et Materialia. Determination of single crystals’ elastic constants from the measurement of ultrasonic velocity in the polycrystalline material. 1992, 40: 3277-3283
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
WADLEY H N G, LU Y, GOLDMAN J A. Journal of Nondestructive Evaluation. Ultrasonic determination of single crystal sapphire fiber modulus. 1995, 14(1): 31-38
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
RINKEVICH A B, STEPANOVA N N, RODIONOV D P. The Physics of Metals and Metallography. Velocities of elastic waves and the elasticity moduli of nickel-base superalloy and of the 60N21 alloy. 2008, 105(5): 509-516
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
PATEL D K, HARBI H F, KALIDINDI S R. Acta Materialia. Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements. 2014, 79: 108-116
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
KIM Y, KIM Y M, KOH J Y, et al. Scripta Materialia. Evaluation of single crystal elastic constants and stacking fault energy in high-nitrogen duplex stainless steel by in-situ neutron diffraction. 2016, 119: 1-4
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
PEREA P E, PIRLING T, WITHERS P J, et al. Materials & Design. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloy. 2016, 89: 856-863
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
ZHUF, BAI P, GONG Y, et al. Measurement. Accurate measurement of elastic modulus of specimen with initial bending using two-dimensional DIC and dual-reflector imaging technique. 2018, 119: 18-27
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
RAMIHA, RAMI E, VICTOR F, et al. Microporous and Mesoporous Materials. Mechanical characterization of aerogel materials with digital image correlation. 2016, 226: 44-52
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
TAKAGI H, FUJIWARA M, KAKEHI K. Materials Science and Engineering: A. Measuring Young’s modulus of Ni-based superalloy single crystals at elevated temperatures through microindentation. 2004, 387-389: 348-351
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
DYE D, COAKLEY J, VORONTSOV VA, et al. Scripta Materialia. Elastic moduli and load partitioning in a single-crystal nickel superalloy. 2009, 61: 109-112
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
WANG Z, STOICA A D, MA D, et al. Materials Science and Engineering: A. Diffraction and single-crystal elastic constants of inconel 625 at room and elevated temperature determined by neutron diffraction. 2016, 674: 406-412
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
GOLYNETS S A, TOLORAIYA V N, NEKRASOV S N, et al. Physics of Metal and Metallography. Experimental determination of Poisson’s ratio of a single crystal nickel heat-resistant alloy in the temperature range of 20-1000 ℃. 2017, 118(9): 922-927
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
HERMANN W, SOCKEL H G. American Society for Testing and Materials. Investigation of the high-temperature damping of the nickel-base superalloy CMSX-4 in the kHz-range. 1997, 1304: 143-152
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
ICHITSUBO T, KOUMOTO D, HIRAO M, et al. Acta Materialia. Elastic anisptropy of rafted Ni-base superalloy at high temperatures. 2003, 51(16): 4863-4869
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
MA S, BROWN D, BOURKE M A M, et al. Materials Science and Engineering: A. Microstrain evolution during creep of a high volume fraction superalloy. 2005, 399(1): 141-153
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
赵乃仁, 王志辉, 李金国, 等. 材料工程. 一种镍基单晶高温合金的各向异性研究. 2008, (2): 58-61
ZHAO N R, WANG Z H, LI J G, et al. Journal of Materials Engineering. Investigation of the anisotropy for a nickel-base single crystal superalloy. 2008, (2): 58-61
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
于慧臣, 李影, 李骋, 等. 航空动力学报. 一种单晶镍基高温合金在不同温度下的静拉伸性能. 2005, 20(6): 958-963
YU H C, LI Y, LI C, et al. Journal of Aerospace Power. Tensile behavior of a single crystal Ni-base superalloy at different temperatures. 2005, 20(6): 958-963
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
成晓鸣, 杨治国, 尹泽勇. 单晶合金弹性模量及剪切模量的测量与计算[C] //中国航空学会航空发动机强度振动学术会议论文集. 北京: 航空动力机械研究所, 1998: 37-41.
CHENG X M, YANG Z G, YIN Z Y. Measurement and calculation of elastic modulus and shear modulus of single crystal alloys[C] //Proceedings of the Academic Conference on Aeroengine Intensity Vibration of the Chinese Aeronautical Society. Beijing: Institute of Aeronautical Power Machinery, 1998: 37-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
谢惠民, 朱祖成, 戴福隆. 清华大学学报. 金属材料高温蠕变变形的云纹干涉法实验研究. 1996, 36(3): 42-46
XIE H M, ZHU Z C, DAI F L. Journal of Tsinghua University. Study of creep deformation of metal materials with Moiré interferometry. 1996, 36(3): 42-46
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
张宸宇, 吴琼, 董爱民. 应用激光. 云纹干涉法测定1200 ℃单晶材料弹性模量及泊松比研究. 2016, 36(4): 434-439
ZHANG H Y, WU Q, DONG A M. Applied Laser. Moiré interferometer method for measuring Young’s modulus and Poisson’s ratio of 1200 ℃ high-temperature. 2016, 36(4): 434-439
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
李禾, 张少钦, 邓颖, 等. 宇航材料工艺. 高温泊松比测试方法与对比. 2011, 41(6): 28-31
LI H, ZHANG S Q, DENG Y, et al. Aerospace Materials and Technology. Methods for testing of Poisson’s ratio at elevated temperature. 2011, 41(6): 28-31
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
张谦琳, 周劲林. 实验力学. 定向结晶合金材料全部工程弹性常数的超声测定. 1997, 12(4): 506-512
ZHANG Q L, ZHOU J L. Journal of Experimental Mechanics. Determination of all engineering elastic constants for an orientational crystalline alloy with ultrasonic method. 1997, 12(4): 506-512
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
夏俊伟, 孙霓, 陈以方. 无损检测. 超声相控阵法测量材料的弹性模量. 2014, 36(6): 37-39
XIA J W, SUN N, CHEN Y F. Nondestructive Testing. Material elastic modulus measurement with ultrasonic phased array. 2014, 36(6): 37-39
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
胡兴建, 郑百林, 杨彪, 等. 材料科学与工程学报. 压头对Ni基单晶合金纳米压痕结果的影响. 2014, 32(6): 803-808
HU X J, ZHENG B L, YANG B, et al. Journal of Materials Science & Engineering. Influence of indenter on the nanoindentation of Ni based single crystal alloy. 2014, 32(6): 803-808
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
朱强, 蒋庄德, 赵则祥, 等. 稀有金属材料与工程. 在纳米压入仪上进行悬臂梁法测量弹性模量的影响因素分析. 2005, 34(11): 1842-1845
ZHU Q, JIANG Z D, ZHAO Z X, et al. Rare Metal Materials and Engineering. Analysis of the influence factors on the measurement of elastic modulus using the microcantilever deflection on a nanoindenter. 2005, 34(11): 1842-1845
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
LYONS J S, LIU J, SUTTON M A. Experimental Mechanics. High-temperature deformation measurement using digital image correlation. 1996, 36(1): 64-70
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
PAN B, QIAN K M, XIE H M, et al. Measurement Science and Technology. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. 2009, 20(6): 62001-0
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
潘兵, 吴大方, 高镇同. 航空学报. 基于数字图像相关方法的非接触高温热变形测量系统. 2010, 31(10): 1960-1967
PAN B, WU D F, GAO Z T. Acta Aeronautica et Astronautica Sinica. A non-contact high-temperature deformation measuring system based on digital image correlation technique. 2010, 31(10): 1960-1967
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
潘兵, 吴大方, 高镇同, 等. 强度与环境. 1200 ℃高温热环境下全场变形的非接触光学测量方法研究. 2011, 38(1): 52-59
PAN B, WU D F, GAO Z T, et al. Structure & Environment Engineering. Study of non-contact optical metrology for full-field deformation measurement at 1200 ℃. 2011, 38(1): 52-59
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
REICHSTEIN S, KRAFT S, MUGHRABI H. International Journal of Materials Research. Sequence of distinct microyielding stages of the monocrystalline nickel-base superalloy CMSX-6 at high temperature. 2009, 100(4): 494-499
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
郭立, 王延荣. 航空发动机. 定向结晶及相应单晶材料弹性常数间的关系. 2007, 33(2): 22-26
GUO L, WANG Y R. Aeroengine. Relationship of elastic constants between DS and corresponding SC material. 2007, 33(2): 22-26
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |